
ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
№ 2 (22) 2015

19

УДК 001.891.57:004.043(045)
Sidorova N.N.
National Aviation University

ONTOLOGY-DRIVED
METHOD USING
PROGRAMMING
STYLES

Application of experience in software
engineering plays an important role in
improving the efficiency of development and
maintenance of software products.
Experience is applied through using of
software development methods and life cycle
models, based on the use of legacy software,
and reuse. In connection with distribution of
engineering methods of the software
development, the models of life cycle, based
on component development and reuse, and
extreme programming are put and solved
the problems connected with reading of
program texts, written on different
programming languages and at various
times. Application of these methods and
models increases the complexity of software
and the collective nature of its development
and maintenance and requires the use of
programming styles. Through collaborative
development and reuse, the style has a direct

and through training - indirectly related to all processes of the software lifecycle. Application of styles in

programming means the improvement of the efficiency of development and maintenance of software. For the first time
is proposed a method of application programming style based on ontologies, providing greater efficiency through using
of style complete, by the way precise and formal description of the domain ontology and using OWL-DL to automate
processes associated with its creation and maintenance. The results of the study programming stylistics domain are
presented. The result is the taxonomy. A taxonomy of concepts was used to construct the programming styles ontology.
Ontology is a part of the tool that is constructed according to the own method. The tool is created for using in
programming processes and called a programmer assistant tool.

Застосування досвіду грає важливу роль в інженерії програмного забезпечення для підвищення

ефективності створення і супроводження програмного забезпечення. Досвід застосовується шляхом
використання методів і моделей життєвого циклу, які засновані на застосуванні успадкованого програмного
забезпечення і повторного використання, що спрямовані на рішення проблем пов’язаних з читанням текстів
програм, написаних на різних мовах програмування і в різний час. Завдяки колективної розробці і повторному
використанню, стиль має прямий, а завдяки навчанню непрямий вплив на усі процеси життєвого циклу.
Застосування стілей веде до підвищення якості і супроводжуємости програмного забезпечення. Вперше
пропонується метод застосування стилів програмування на основі онтологій, що підвищує ефективність і
автоматизує відповідні процеси. Онтологія є частиною інструменту який автоматизує застосування стилю.

Применение опыта играет важную роль в инженерии программного обеспечения для повышения

эффективности создания и сопровождения программного обеспечения. Опыт применяется путем
использования методов и моделей жизненного цикла, которые основаны на применении унаследованного
программного обеспечения и повторного использования, направленных на решение проблем, связанных с
чтением текстов программ, написанных на различных языках программирования и в разное время. Благодаря
коллективной разработке и повторному использованию, стиль имеет прямой, а благодаря обучению косвенное
влияние на все процессы жизненного цикла. Применение Стилей ведет к повышению качества и
супроводжуемосты программного обеспечения. Впервые предлагается метод применения стилей
программирования на основе онтологий, повышает эффективность и автоматизирует соответствующие
процессы. Онтология является частью инструмента который автоматизирует применение стиля.

Keywords: Software, programming, programming language, programming style, coding standard,

ontology, taxonomy, OWL-DL.

Formulation of scientific problem
Application of experience in software

engineering plays an important role in improving
the efficiency of development and maintenance

of software products. Experience is applied
through using of software development methods
and life cycle models, based on the use of legacy
software, and reuse [1]. In connection with
distribution of engineering methods of the

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
№ 2 (22) 2015

software development, the models of life cycle,
based on component development and reuse, and
extreme programming are put and solved the
problems connected with reading of program
texts, written on different programming
languages and at various times. Application of
these methods and models increases the
complexity of software and the collective nature
of its development and maintenance and requires
the use of programming styles [2]. For example,
on the Fig. 1 fulfilling program is presented [2].
This program was written on the special
“confusion” way. Therefore, to understand texts
of programs, it is often necessary to know either
specified features of the time of their writing, or
ideologies dominating over this period and ideas
of authors. It leads to the necessity for a
programmer to be able to represent idea or
ideology and to transfer representation together
with the program. In various areas, this aspect of
activity of the person concerns style, and its
research - is a subject of stylistics.

Fig. 1 The text of “confusion” program

Therefore, the study and solution of problems
related to the application programming styles for
a long time is of particular relevance.

Programming style ensures all processes of
creating software, represented by a set of rules
expressed by the linguistic resources and reflects
prevailing during the software life cycle is not
only technical, but also a cultural experience [3 -
5].

Through collaborative development and reuse,
the style has a direct and through training -
indirectly related to all processes of the software
lifecycle. Application of styles in programming
means the improvement of the efficiency of
development and maintenance of software.

Analysis research

At various times the problem of style
programming directly or indirectly was studied
by E.Dejkstra, I.Kernigan, F.Plodger, W.Tassel,
I.Velbitsky, A.Ershov, I.Pottosin, N.Sidorov. In

programming, the concept of style was
introduced with the advent of structured
programming. I.Kernigan, F.Plodger were the
first researches who began to use the style. Later,
there were different interpretations of style, for
example, by A.Ershov, V.Borovin. N.Sidorov
was proposed the programming stylistics subject
[2].

There are two approaches to solving problems
of application programming style: language-
oriented and technology-oriented [2]. The
essence of the first approach is based on the
assumption that the use of programming style is
done by writing the texts of programs by means
of a programming language, and hence texts of
programs never go beyond language. This
approach has the following disadvantages:

- a translator for a changing variety of styles
cannot be build;

- some of the rules that describe the style, can
not be converted into grammar;

- some of the rules that describe the style, can
not be realized only lexical and syntactic
computation.

The essence of the second approach is to
develop and implement means, processes and
methodologies for automation solutions of the
style application. In this case, the means to meet
the following requirements:

- ensure that the traditional notion of styles;
- implement the necessary actions associated

with the use of empirical methods;
- does not depend on the phases of the life

cycle.
The database is the basis of the means of

applying the programming style. However, the
use of databases to represent the domain
knowledge shown its limitations and appropriate
use of new tools, such as ontologies [6].

Main material and justification of the

results
For the first time is proposed a method of

application programming style based on
ontologies, providing greater efficiency through
using of style complete, by the way precise and
formal description of the domain ontology and
using OWL-DL to automate processes associated
with its creation and maintenance.

Fig. 2 shows the organization of the method.
Processes are supported by three ontologies. One
reflects the knowledge of programming styles,
and the second, about the styles of programming
languages, and the third, about programming
languages.

20

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
№ 2 (22) 2015

Languages
Ontology

Programming
Styles

Programming
Languages

Programming Sourse
Code

Style
Ontologies (programming

style, programming
language style)

Fig. 2. Ontology-driven using of programming style

The investigation of method requires some
work, which consists in the analysis of the subject

area and constructing the source structures
(thesaurus, taxonomy, dictionaries) (Figure 3).

Fig. 3. The processes of preparation

The article discusses the results of processes.
Domain analysis is fulfilled with the help of

the domain analysis techniques. As a result, a
number of charts are created as the domain
knowledge. Domain is called a programming

stylistics. Knowledge about the domain is
represented by three ontologies - programming
style, programming language style, programming
language (Fig.4).

21

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
№ 2 (22) 2015

Fig.4. Programming stylistics
Knowledge is based on the definition of

programming style. Programming style by the
definition is the style that is used in human

activity (domain), whose essence consists in
programming (Fig. 5).

«programming style denotation»:
programming style

Idea = «any»

Existent time = « some time »

Action = « programming »

Fig.5. Class-programming style

Representation of style within the limits of the
second approach can look like St = <А, S, D>,
where A – set of own axioms of style not
depending on an essence of expressed ideology, S
and D - set of the axioms describing characteristic
features of ideology of style in static’s and
dynamics. The last sets can be used for
description of style of programming.

Set A may contain such axioms:
1. Uniqueness of style: if exists ideology (I)

and style, based on it, then there are no styles that
are also based on this ideology

));()((~)(IStItSIISt =∀
2. Existence of style of human activity: if there

exists ideology (I), style St, based on it, and
human activity P, then exists style of human
activity Stp(St (I), P), based on the style St(I)

);),((~)(PIStPStIISt p∀∀
3. Reflexivity: every style is the sub style of

itself
)(StStSt =∀

4. Antisymmetry: substyle (style, which is
derived from some style) cannot be a style for a
style, it was based on.

));,(~),((122121 StStRStStRStSt ¬∀∀
5. Transitivity: if style (St2) is substyle of some

style (St1) and style (St3) is substyle of (St2), then
(St3) is substyle of (St1)

)),(~),((~),((,, 313221321 StStRStStRStStRStStSt ∀∀∀

The «programming» domain consists of three
essences – subject (programmer), tool
(programming language), and product (program)
(Fig.5).

Fig.6. Programming domain

Programming style consists of the rules that

apply to parts of the program text (Fig. 7)

22

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
№ 2 (22) 2015

Fig. 7. Programming style with associated terms

The set of style rules consists of three types of rules - syntactic, semantic and pragmatic (Fig. 8)
.

Fig.8. Rules of style

Description of the programming style is

represented by the set of style rules. For example
[6],

Syntax rule:
Synopsis: Do not use an underscore in

identifiers

Language: C#
Level: 8
Category: Naming

Semantic rule:
Synopsis: Do not change a loop variable inside

a for loop block
Language: C#
Level: 2
Category: Control flow
Description: updating the variable loop within

the loop body is generally considered to be

confusing, even more so if the variable loop is
modified in more than one location. This rule also
applies to foreach loops.

Pragmatic rule:
Synopsis: Name an identifier according to its

meaning and not its type
Language: C#
Level: 6
Category: Naming
The rule of style consists of four parts:

synopsis – is described essence of rule; language
– the language is identified; level – level of using;
category – link with language constructions and
processes; description – consists of comments.

Programming style is applied to parts of the
program text. Part of the program text can be of
two types – predefined by syntax parts, and parts,
that can be defined (Fig. 9).

23

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
№ 2 (22) 2015

Fig.9 Parts of program text

Programming languages are represented with
the help of the encapsulation levels [1]. Each level
has its own type of the programming construction
(Figure 10). There are lexems (lexical level),

operators (operator level), subroutines
(subroutines level), modules (module level),
classes (class level).

Fig. 10 Levels of encapsulation of programming language

24

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
№ 2 (22) 2015

Definition in descriptive logic this chart is the

following:

25

LexicalLevel َ OperatorLevel

OperatorLevel َ SubroutineLevel

SubroutineLevel َ ModularLevel

SubroutineLevel َ ProgrammingLanguage

SubroutineLevel َ ClassLevel

ModularLevel َ ProgrammingLanguage

ClassLevel َ ProgrammingLanguage

Thus, using levels of encapsulation the style
rules can be classified as the following (Figure
11).

Fig. 11 Ontology of programming style's rules

Definition in descriptive logic this chart is the

following:

ProgrammingStyleRules َ

ProgrammingStyle

RulesOfSubroutine َ

ProgrammingStyleRules

RulesOfVariables َ ProgrammingStyleRules

RulesOfStatements َ

ProgrammingStyleRules

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
№ 2 (22) 2015

RulesOfMethods َ ProgrammingStyleRules

FileOrganizationRules َ

ProgrammingStyleRules

RulesOfClasses َ ProgrammingStyleRules

CommentsRules َ ProgrammingStyleRules

RulesOfModule َ ProgrammingStyleRules

The concrete programming styles are a created

for concrete programming languages (Figure 11).

Fig. 11 Programming language styles

26

Definition in descriptive logic this chart is the
following:

ООLanguages َ ProgramingLanguage

ModuleLanguages َ ProgramingLanguage

SubroutineLanguages َ

ProgramingLanguage

WebLanguages َ ProgramingLanguage

C++ َ ООLanguages

C# َ ООLanguages

Modula َ ModuleLanguages

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
№ 2 (22) 2015

Ada َ ModuleLanguages

C َ SubroutineLanguages

Pascal َ SubroutineLanguages

HTML َ WebLanguages

Fragment taxonomy rules for object-oriented
language (C#) is shown in the Figure 12. The
taxonomy consists of two blocks – naming
convention and statements rules. There are also
declaration rules, comment rules, white space
rules and file organization rules.

For example, naming convention rule is “Do
not use an underscore in identifiers” or “Use an -
ing and -ed form to express pre-events and post-
events”. The ontology is created on the base of
this taxonomy.

Fig. 12 Taxonomy of programming rules

27

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
№ 2 (22) 2015

The method was used for created the tool –
“Programmer Assistant” (Fig. 13). The main part
of tool is ontology. The tool realized with the help

of Protégé platform. The ontology was included
using Protégé editor.

Fig.13 Screenshot of interface

Results and future researches
For the first time is proposed a method of

application programming style based on
ontologies, providing greater efficiency through
using of style complete, by the way precise and
formal description of the domain ontology and
using OWL-DL to automate processes associated
with its creation and maintenance.The results of
the study programming stylistics domain are
presented. The result is the taxonomy. A
taxonomy of concepts will be used to construct
the programming styles ontology. Ontology is a
part of the tools that is constructed according to
the own method. The future researches are
creating programming style ontology and
programmer assistant tool.

28

References
1. Sidorov M.O. Software engineering. [текст]

/ Sidorov M.O. // – 2007. – Kyiv. – NAU.- 135 p.

2. Sidorov N.A. Software stylistics [текст] /
Sidirov N.A. // Proc. of the National Aviation
University – 2005. - №2. – P. 98 – 103.

3. Goldberg A. Programmer as Reader
[текст] / Goldberg A. // IEEE Software – 1987.
Sept. – P. 62 – 70.

4. V. Railich Software cultures and
evolution / V. Railich, N. Wilde, M. Buckellew //
Computer. – 2001. – Sept. – P. 25 – 28.

5. Knuth D.E. Literate are programming
[текст] / Knuth D.E. // Computer Journal. – 1984.
– Vol. 27, N 2. – P. 42 – 44.

6. Sidorova N.M. Ontology of programming
style [текст] / Sidorova N.M., Kramar Y.M. // –
Proc. the sixth world longest “Aviation in the
XXI-st Century. – 2014. – v.1. – P.1.13.28 –
1.13.36

7. Philips Healthcare – C# Coding Standart
[текст]. – Philips. – 2009. – 57p.

Information about author:

Sidorova Nika Nikolaevna – postgraduate student of Software Engineering
Department of the National Aviation University. Scientific interests: software
engineering, education.

E-mail: nika.sidorova@livenau.net

