[H)KEHEPLS [IPOTPAMHOTO 3ABE3IIEUEHHS
Ne 2 (22) 2015

YK 001.891.57:004.043(045) Application of experience in software
Sidorova N.N. engineering plays an important role in
improving the efficiency of development and
maintenance of sofiware products.
Experience is applied through using of
software development methods and life cycle
models, based on the use of legacy software,

O N TO LO GY D RIVE D and reuse. In connection with distribution of
- engineering methods of the software

development, the models of life cycle, based
M ET H o D U s I N G on component development and reuse, and
extreme programming are put and solved

the problems connected with reading of
P ROG RAM M I N G program texts, written on different
programming languages and at various

times. Application of these methods and
STYLE s models increases the complexity of software
and the collective nature of its development

and maintenance and requires the use of

programming styles. Through collaborative
development and reuse, the style has a direct

National Aviation University

and through training - indirectly related to all processes of the software lifecycle. Application of styles in
programming means the improvement of the efficiency of development and maintenance of software. For the first time
is proposed a method of application programming style based on ontologies, providing greater efficiency through using
of style complete, by the way precise and formal description of the domain ontology and using OWL-DL to automate
processes associated with its creation and maintenance. The results of the study programming stylistics domain are
presented. The result is the taxonomy. A taxonomy of concepts was used to construct the programming styles ontology.
Ontology is a part of the tool that is constructed according to the own method. The tool is created for using in
programming processes and called a programmer assistant tool.

3acmocysanns O0ocgidy epae 8axciugy poib 8 IHiCeHepii NpocpamMHO20 3abe3nedeHHs ONd NiOGUUEHHS
epexmuenocmi CmeopeHHs I CYNPOBOONCEHHA NPOZPAMHO20 3abe3neuenHs. Jl0c6i0 3aCMOCO8YEMbCA WIAXOM
BUKOPUCMAHHA MemMOOi6 i MOOenel JICUMMEBO20 YUKILY, AKi 3ACHOGANI HA 3ACMOCYBAHHI YCNAOKOBAHO20 NPOSPAMHO20
3abe3neuents i NOBMOPHO20 GUKOPUCIANHS, WO CNPAMOBAHI HA PIUEHHSA NPOOIeM NOG A3AHUX 3 YUMAHHAM MeEKCMie
npocpam, HANUCAHUX HA PI3HUX MOBAX NPOPAMYBANHA | 6 PisHull Yac. 3a605AKu KOIEKMUSHoI po3pobyi i nogmopnomy
BUKOPUCIMAHHIO, CIMUTL MAE NPAMULL, a 3A60AKU HAGUAHHIO HENpAMUll 6NAUE HA YCI NPOYecu HCUMMEBO20 YUKTY.
3acmocysanna cmineii 6ede 00 NiosUWeHHA AKOCMI i CYNPOBOOICYEMOCMU NPOSPAMHO20 3abe3neuenHs. Bnepuie
NPONOHYEMbCSA MEMOO 3ACMOCYS8AHHA CMULIE NPOSPAMYBAHH HA OCHOGI OHMOJORI, Wo Nidguwye edhekmusHicmy i
agmomamu3sye ionosioui npoyecu. OHMOI02IsA € HACMUHOI IHCIMPYMEHMY KU A8MOMAMU3YE 3ACMOCYBAHHI CIUTIO.

Ilpumenenue onvima ucpaem 6AXNCHYIO POTb 6 UHICEHePUU NPOSPAMMHO20 ObecnedeHus O NOGbIUeHUs
aghpexmusHocmu co30aHus U CONPOBONHCOCHUS NPOSPAMMHO20 obecneuenus. Onvlm HpUMeHAemcs nymem
UCNOTL30BAHUA MEMOO08 U MOOenell HCUSHEHHO20 YUKAA, KOMOopble OCHOBAHbI HA NPUMEHEHUU YHACIe008AHHO20
NPOSPAMMHO20 O0becnedeHus U NOBMOPHO2O UCHONIb306AHUA, HANPAGIEHHLIX HA peuieHue Npoonem, CEA3AHHBIX C
umeHueM MeKCcmog nPpoSPamm, HANUCAHHBIX HA PA3TUYHBIX A3LIKAX NPOSPAMMUPOSAHUs U & pasHoe epems. brnazodaps
KOJIEKMUHOU paspabomxe u nOGMOPHOMY UCNONbI0BAHUIO, CINULL UMeemn NPaMoU, a 61a200apsa o0y4enulo KOCgeHHoe
6IUAHUE HA BCe Npoyeccyl HcusHeHHoeo wyukia. Ilpumenenue Cmuneii edem K HNOGbIUEHUIO KAuecmea U
CYNPOBOONCYEMOCTIBI NPOSPAMMHO20 — 0becneyenusi. Bnepsvie npeonazaemcs memoO npumenenus — cmuineil
NPOZPAMMUPOSAHUS HA OCHOGE OHMONO2UL, NOGbIUAen PPEKMUSHOCTNL U ABMOMAMUUPYEM COOMEENCMEYIoujUe
npoyeccol. OHMONO2UsA AGNACMNCA YACMBIO UHCIMPYMEHMA KOMOPYbill A8MOMAMU3Upyem npumeHeHue Cmus.

Keywords: Software, programming, programming language, programming style, coding standard,
ontology, taxonomy, OWL-DL.
of software products. Experience is applied

Formulation of scientific problem through using of software development methods
Application of experience in software and life cycle models, based on the use of legacy
engineering plays an important role in improving software, and reuse [1]. In connection with
the efficiency of development and maintenance distribution of engineering methods of the

19

[H)KEHEPLS [IPOTPAMHOTO 3ABE3IIEUEHHS
Ne 2 (22) 2015

software development, the models of life cycle,
based on component development and reuse, and
extreme programming are put and solved the
problems connected with reading of program
texts, written on different programming
languages and at various times. Application of
these methods and models increases the
complexity of software and the collective nature
of its development and maintenance and requires
the use of programming styles [2]. For example,
on the Fig. 1 fulfilling program is presented [2].
This program was written on the special
“confusion” way. Therefore, to understand texts
of programs, it is often necessary to know either
specified features of the time of their writing, or
ideologies dominating over this period and ideas
of authors. It leads to the necessity for a
programmer to be able to represent idea or
ideology and to transfer representation together
with the program. In various areas, this aspect of
activity of the person concerns style, and its
research - is a subject of stylistics.

#include <stdio.h>
main(t,_,ajl

char *a;

{return = 12t<3?main(-79,-13,a+main(-87,1-_,

main(-86, 0, a+1)+a)):Li<_?main(t+1, _, a,}.'.?,main (-94, 27+t a

J&&t ==27_<13 ?main (2, _+1, "%s %d Zed\n"):9:16:1<02t<-72?main(_,

@n'+,3 /*{}1»—h;#cdnr/— {}r/”‘de} SRR W% Swg i+ SR+ nfn+
cEgEn S Y A3 WK WK+ Je# dg# g# +d' KRl
#q }eKK’#}h wleKK{nl] V& #gan) EW) {(nl] V+#ndlirw' 1%){n

[Unfn#'; r{Ew'r nefnl] VE{1,+'K frw' iK{; [{nl] twHgH
n'wk nw' iwk{KE{nl] l/w{%'T#w#' i - (nl] ™ {q#'1d;v'}H{nlwb!/*de}'c
Sl v+ YEE e, Enw] Y kd e+
FrdgEw! nr/) JHEIE R 0F JIER(Y)
42-507_=="a?putchar(al31]):main(-65,_a+1):main((*a == V)+t,_a
+1):0<r?main (2, 2, "%s"): *a==""||\main(0,main(-61, *a, "lek;dc
@K' (g)-[w]*%en+r3#] {}: \nuwloca-O;m vpbks fintdCeghiry")a+1);}

Fig. 1 The text of “confusion” program

Therefore, the study and solution of problems
related to the application programming styles for
a long time is of particular relevance.

Programming style ensures all processes of
creating software, represented by a set of rules
expressed by the linguistic resources and reflects
prevailing during the software life cycle is not
only technical, but also a cultural experience [3 -
5].

Through collaborative development and reuse,
the style has a direct and through training -
indirectly related to all processes of the software
lifecycle. Application of styles in programming
means the improvement of the efficiency of
development and maintenance of software.

Analysis research

At various times the problem of style
programming directly or indirectly was studied
by E.Dejkstra, [.Kernigan, F.Plodger, W.Tassel,
I.Velbitsky, A.Ershov, 1.Pottosin, N.Sidorov. In

20

programming, the concept of style was
introduced with the advent of structured
programming. [.Kernigan, F.Plodger were the
first researches who began to use the style. Later,
there were different interpretations of style, for
example, by A.Ershov, V.Borovin. N.Sidorov
was proposed the programming stylistics subject
[2].

There are two approaches to solving problems
of application programming style: language-
oriented and technology-oriented [2]. The
essence of the first approach is based on the
assumption that the use of programming style is
done by writing the texts of programs by means
of a programming language, and hence texts of
programs never go beyond language. This
approach has the following disadvantages:

- a translator for a changing variety of styles
cannot be build;

- some of the rules that describe the style, can
not be converted into grammar;

- some of the rules that describe the style, can
not be realized only lexical and syntactic
computation.

The essence of the second approach is to
develop and implement means, processes and
methodologies for automation solutions of the
style application. In this case, the means to meet
the following requirements:

- ensure that the traditional notion of styles;

- implement the necessary actions associated
with the use of empirical methods;

- does not depend on the phases of the life
cycle.

The database is the basis of the means of
applying the programming style. However, the
use of databases to represent the domain
knowledge shown its limitations and appropriate
use of new tools, such as ontologies [6].

Main material and justification of the
results

For the first time is proposed a method of
application programming style based on
ontologies, providing greater efficiency through
using of style complete, by the way precise and
formal description of the domain ontology and
using OWL-DL to automate processes associated
with its creation and maintenance.

Fig. 2 shows the organization of the method.
Processes are supported by three ontologies. One
reflects the knowledge of programming styles,
and the second, about the styles of programming
languages, and the third, about programming
languages.

[H)KEHEPLS [IPOTPAMHOTO 3ABE3IIEUEHHS
Ne 2 (22) 2015

Style

——
Ontologies(programming
style, programming
language style)
I
I
Programming
> Styles I%
i Programmin, I% Sourse
£x & Code
-
‘ §
L Programming
Languages
Y
Languages

Ontology

Fig. 2. Ontology-driven using of programming style

area and constructing the source structures

The investigation of method requires some
(thesaurus, taxonomy, dictionaries) (Figure 3).

work, which consists in the analysis of the subject

The construction of Description Checking the
Domain analysis —® taxonomies and - ontologiesdescriptivi—® solubility of
thesauri (e logic ontologies

Fig. 3. The processes of preparation

The article discusses the results of processes. stylistics. Knowledge about the domain is
Domain analysis is fulfilled with the help of represented by three ontologies - programming
the domain analysis techniques. As a result, a style, programming language style, programming
number of charts are created as the domain language (Fig.4).
knowledge. Domain is called a programming

> .
Programming style f mgramn;l;}lgelanguage Programming language

A A A

Programming
denotation style

!

Programming stylistics

21

THXXEHEPIS ITPOI'PAMHOTI'O 3ABE3ITEYHEHH S

Ne 2 (22) 2015

Fig.4. Programming stylistics

Knowledge is based on the definition of
programming style. Programming style by the
definition is the style that is used in human

activity (domain), whose essence consists in
programming (Fig. 5).

«programming style denotationy:
programming style

Idea = «any»
Existent time = « some time »

Action = « programming »

Fig.5. Class-programming style

Representation of style within the limits of the
second approach can look like St = <A, S, D>,
where A — set of own axioms of style not
depending on an essence of expressed ideology, S
and D - set of the axioms describing characteristic
features of ideology of style in static’s and
dynamics. The last sets can be wused for
description of style of programming.

Set A may contain such axioms:

1. Uniqueness of style: if exists ideology (I)
and style, based on it, then there are no styles that
are also based on this ideology

VISt(1) ~ (St(1) = St(1));

2. Existence of style of human activity: if there
exists ideology (I), style St, based on it, and
human activity P, then exists style of human
activity St,(St (I), P), based on the style St(I)

VISt(I) ~ VPSt ,(St(1), P);

3. Reflexivity: every style is the sub style of
itself

VSt(St = St)

4. Antisymmetry: substyle (style, which is
derived from some style) cannot be a style for a
style, it was based on.

VStV St, (R(St,,St,) ~—=R(St,,St)));

5. Transitivity: if style (St,) is substyle of some
style (St;) and style (St;) is substyle of (St,), then
(St;) is substyle of (St))

The «programming» domain consists of three
essences — subject (programmer), tool
(programming language), and product (program)
(Fig.5).

Studies p { Belong
1 i
Programming
language
1 1
Programmer Program
1
Writes ’

Fig.6. Programming domain

Programming style consists of the rules that
apply to parts of the program text (Fig. 7)

22

[H)KEHEPLS [IPOTPAMHOTO 3ABE3IIEUEHHS
Ne 2 (22) 2015

Parts of program text

Applies to

Programming style

Consists of

Fig. 7. Programming style with associated terms

The set of style rules consists of three types of

rules - syntactic, semantic and pragmatic (Fig. 8)

Rules of style

Pragmatic rules

Semantic rules

Fig.8. Rules of style

Description of the programming style is
represented by the set of style rules. For example

[6],

Syntax rule:
Synopsis: Do not use an underscore
identifiers

in

Language: C#
Level: 8
Category: Naming

Semantic rule:

Synopsis: Do not change a loop variable inside
a for loop block

Language: C#

Level: 2

Category: Control flow

Description: updating the variable loop within
the loop body is generally considered to be

confusing, even more so if the variable loop is
modified in more than one location. This rule also
applies to foreach loops.

Pragmatic rule:

Synopsis: Name an identifier according to its
meaning and not its type

Language: C#

Level: 6

Category: Naming

The rule of style consists of four parts:
synopsis — is described essence of rule; language
— the language is identified; level — level of using;
category — link with language constructions and
processes; description — consists of comments.

Programming style is applied to parts of the
program text. Part of the program text can be of
two types — predefined by syntax parts, and parts,
that can be defined (Fig. 9).

23

IHDKEHEPIS [TIPOTPAMHOI'O 3ABE3IEYEHHS
Ne2 (22) 2015

Parts of program text

Parts, that can be
defined

Language syntax
rules

Programming style
rules

Language syntax

Fig.9 Parts of program text

Programming languages are represented with operators (operator level), subroutines
the help of the encapsulation levels [1]. Each level (subroutines level), modules (module level),
has its own type of the programming construction classes (class level).

(Figure 10). There are lexems (lexical level),

Programming
Language

included included

Modular level

included

included included

Subroutine level

included

Operator level

included

Lexical level

Fig. 10 Levels of encapsulation of programming language

24

[H)KEHEPLS [IPOTPAMHOTO 3ABE3IIEUEHHS
Ne 2 (22) 2015

Definition in descriptive logic this chart is the
following:

SubroutineLevel E ClassLevel

LexicalLevel = OperatorLevel

ModularLevel E ProgrammingLanguage

OperatorLevel = SubroutineLevel

ClassLevel E ProgramminglLanguage

SubroutineLevel E ModularLevel

Thus, using levels of encapsulation the style
rules can be classified as the following (Figure
11).

SubroutineLevel = ProgramminglLanguage

Programming
Style

Rules of
subroutine

included Rules of module

Programming
Style rules

Rules of
variables

Comments Rules

Rules of
statements

Rules of Classes

File organization

Fig. 11 Ontology of programming style's rules

Definition in descriptive logic this chart is the
following:

RulesOfVariables = ProgrammingStyleRules

ProgrammingStyleRules -
ProgrammingStyle RulesOfStatements C
RulesOfSubroutine -

ProgrammingStyleRules

ProgrammingStyleRules

25

[H)KEHEPLS [IPOTPAMHOTO 3ABE3IIEUEHHS
Ne 2 (22) 2015

RulesOfMethods = ProgrammingStyleRules

In

FileOrganizationRules

ProgrammingStyleRules

RulesOfClasses = ProgrammingStyleRules

OO - languages

Programming

Module -
languages

CommentsRules = ProgrammingStyleRules

RulesOfModule = ProgrammingStyleRules

The concrete programming styles are a created
for concrete programming languages (Figure 11).

language

Web-languages

Subroutine
language

Fig. 11 Programming language styles
Definition in descriptive logic this chart is the
following:

OOLanguages T PrograminglLanguage

ModuleLanguages & PrograminglLanguage

I

SubroutineLanguages

ProgramingLanguage

WebLanguages = Programingl.anguage

C++ E OOLanguages

C# E OOLanguages

Modula & ModuleLanguages

26

THXXEHEPIS ITPOI'PAMHOTI'O 3ABE3ITEYHEHH S
Ne 2 (22) 2015

Ada & ModuleLanguages

C C SubroutineLanguages

Pascal © SubroutineLanguages

HTML E WebLanguages

Fragment taxonomy rules for object-oriented
language (C#) is shown in the Figure 12. The
taxonomy consists of two blocks — naming
convention and statements rules. There are also
declaration rules, comment rules, white space
rules and file organization rules.

For example, naming convention rule is “Do
not use an underscore in identifiers” or “Use an -
ing and -ed form to express pre-events and post-
events”. The ontology is created on the base of
this taxonomy.

NamingConvantion

NamingConvention
type | NamingConvention

il

MethodNamingRule

typs

ClassNamingRule
ype

InterfaceMamingRule

type

ConstantNamingRule

ype

VariableNamingRule

rLocnl\farinblstmJngRuls

[GlobalvariableNamingRule
1
b

VariableMamingRule
type VariableMamingRule

LoopCounterMamingRule

[
|

i.
It
|
|

I+
Lt

ParameterNamingRule

ype

ProgrammingStyleRule 3 X

type | StatementRule

AccessorNamingRule
type |

StatementRule

StatementRule

DeclarationRule

type | DeclarationRule

WhiteSpaceRule
type | WhiteSpaceRule

IndentationRule
typa | IndentationRule

CommentsRule
ype | CommentsRule

_l

FileQrganizationRule
type | FileOrganizationRule

SimpleStatermentRule
type |

SwitchStatementRule
type

,_/\E'_' LoopStatementRule
type LoopStatementRule

IfStatementRule

ReturnStatementRule

Fig. 12 Taxonomy of programming rules

27

THXXEHEPIS ITPOI'PAMHOTI'O 3ABE3ITEYHEHH S

Ne2 (22) 2015

The method was used for created the tool —
“Programmer Assistant” (Fig. 13). The main part
of tool is ontology. The tool realized with the help

of Protégé platform. The ontology was included
using Protégé editor.

Ayt Onizegy v Enkioe . ncads byl | WL o

T-0Thmg
T ProgrammingLanguage
7 | ClassLevel
T Subroutinel evel
T Operatorlevel
exicallevel
T- £ Hodufart evel
T | Subrotinel evel
T § Operatorlee
§ LencalLevel
T § Subroutinel evel
T OperatorLevel
D Lexicallevel

Thiy == PigrammingLinge

e ~l. =
ajh =t Uil ot bl e Cparmipl — Liitilin

Fig.13 Screenshot of interface

Results and future researches

For the first time is proposed a method of
application programming style based on
ontologies, providing greater efficiency through
using of style complete, by the way precise and
formal description of the domain ontology and
using OWL-DL to automate processes associated
with its creation and maintenance.The results of
the study programming stylistics domain are
presented. The result is the taxonomy. A
taxonomy of concepts will be used to construct
the programming styles ontology. Ontology is a
part of the tools that is constructed according to
the own method. The future researches are
creating programming style ontology and
programmer assistant tool.

References
1. Sidorov M.O. Software engineering. [TekcT]
/ Sidorov M.O. // —2007. — Kyiv.—NAU.- 135 p.

Information about author:

engineering, education.

2. Sidorov N.A. Software stylistics [TekcT] /
Sidirov N.A. // Proc. of the National Aviation
University — 2005. - Ne2. — P. 98 — 103.

3. Goldberg A. Programmer as Reader
[Texct] / Goldberg A. // IEEE Software — 1987.
Sept. — P. 62 —70.

4. V. Railich Software cultures and
evolution / V. Railich, N. Wilde, M. Buckellew //
Computer. — 2001. — Sept. — P. 25 — 28.

5. Knuth D.E. Literate are programming
[Texct] / Knuth D.E. // Computer Journal. — 1984.
—Vol.27,N2. - P.42 — 44,

6. Sidorova N.M. Ontology of programming
style [tekct] / Sidorova N.M., Kramar Y.M. // —
Proc. the sixth world longest “Aviation in the
XXI-st Century. — 2014. — v.1. — P.1.13.28 —
1.13.36

7. Philips Healthcare — C# Coding Standart
[Texct]. — Philips. — 2009. — 57p.

Sidorova Nika Nikolaevna — postgraduate student of Software Engineering
Department of the National Aviation University. Scientific interests: software

E-mail: nika.sidorova@livenau.net

28

