УДК 621(045)

О. В. Вишнівський, канд. техн. наук

ВИПРОМІНЮВАННЯ ФОТОННОГО КРИСТАЛА З ФРАКТАЛЬНОЮ СТРУКТУРОЮ

Інститут аерокосмічних систем управління, inbox@vishnevsky.org

Запропоновано 2D модель фрактальної структури на основі двовимірного фотонного кристала, здатної виконувати частотну фільтрацію електромагнітних коливань.

Ключові слова: фільтр, фотонний кристал, килим Серпинського, метод кінцевих елементів.

Вступ. Фотонні кристали (ФК) – структури на основі впорядкованої просторової послідовності діелектриків з різними діелектричними проникностями – сьогодні переживають справжній науково-технічний бум. Вони вже активно використовуються у волоконно-оптичних лініях передавання. На черзі *LED* –панелі для телевізорів, застосування в біофотоніці та ін.

Постановка проблеми. Мета дослідження – вивчення картини розподілу електричного поля усередині фрактальної фотонно-кристалічної структури та аналіз можливості побудови математичної моделі фільтра на її основі.

Аналіз досліджень та публікацій. Фундаментальну теорію оптичних пристроїв, яку застосовують також для ФК, подано в праці [1]. Розвинення теорії безпосередньо щодо ФК та можливості практичного використання викладено в працях [2; 3].

Формулювання для рівнянь у частинних похідних (*PDE***).** Формулювання для високочастотних електромагнітних хвиль можуть бути отримані із рівнянь Ампера–Максвела та Фарадея–Максвела [1]:

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t},$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}.$$

Використовуючи матеріальні рівняння для лінійного середовища $\mathbf{B} = \mu_0 \mu_r \mathbf{H} + \mathbf{B}_r$ та $\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E} + \mathbf{D}_r$ і струм $\mathbf{J} = \sigma \mathbf{E}$, ці рівняння можна перетворити до форми

$$\nabla \times \mathbf{H} = \mathbf{\sigma} \mathbf{E} + \frac{\partial \varepsilon \mathbf{E}}{\partial t},$$
$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}.$$

За допомогою рівнянь $\mu \mathbf{H} = \nabla \times \mathbf{A}$ та $\mathbf{E} = -\partial \mathbf{A}/\partial t$ записуємо:

$$\mu_0 \sigma \frac{\partial \mathbf{A}}{\partial t} + \mu_0 \frac{\partial}{\partial t} \varepsilon \frac{\partial \mathbf{A}}{\partial t} + \nabla \times (\mu_r^{-1} \nabla \times \mathbf{A}) = 0.$$

Надаючи полям гармонічно-часової форми (для 3D дослідження), отримуємо

$$\mathbf{E}(x, y, z, t) = \mathbf{E}_{z}(x, y, z)e^{j\omega t},$$
$$\mathbf{H}(x, y, z, t) = \mathbf{H}_{z}(x, y, z)e^{j\omega t}.$$

Звідси випливають рівняння поля для електричної та магнітної складових:

$$\nabla \times (\boldsymbol{\mu}_r^{-1} \nabla \times \mathbf{E}) - \omega^2 \boldsymbol{\varepsilon}_c \mathbf{E} = 0;$$

$$\nabla \times (\boldsymbol{\varepsilon}_r^{-1} \nabla \times \mathbf{H}) - \omega^2 \boldsymbol{\mu} \mathbf{H} = 0,$$

де

$$\varepsilon_c = \varepsilon - j \frac{\sigma}{\omega}$$

є комплексною магнітною проникністю матеріалу, через який поширюється електромагнітна хвиля.

Р*DE* формулювання для *TE* хвиль. Коли хвиля поширюється через *xy* – площину моделювання, *TE* має лише одну складову електричного поля у *z* напрямку, а магнітне поле при цьому лежить у площині моделювання. Ось чому

$$\mathbf{E}(x, y, t) = E_z(x, y, t) = E_z(x, y)\mathbf{e}_z e^{j\omega t};$$

$$\mathbf{H}(x, y, t) = H_x(x, y, t)\mathbf{e}_x + H_y(x, y, t)\mathbf{e}_y = (H_x(x, y)\mathbf{e}_x + H_y(x, y)\mathbf{e}_y)e^{j\omega t},$$

де μ_r означає тензор розмірності 2×2, а ε_{rzz} та σ_{zz} – відносну діелектричну проникність і провідність у напрямку *z*. Тоді рівняння

$$\nabla \times (\boldsymbol{\mu}_r^{-1} \nabla \times \mathbf{E}) - k_0^2 \boldsymbol{\varepsilon}_{rc} \mathbf{E} = 0$$

де

$$\varepsilon_{rc} = \varepsilon_r - j \frac{\sigma}{\omega \varepsilon_0}$$

можна спростити до скалярного для E_z :

$$-\nabla \cdot (\tilde{\mu}_r \nabla E_z) - \varepsilon_{rczz} k_0^2 E_z = 0$$

де

$$\tilde{\mu}_r = \frac{\mu_r^{\mathrm{T}}}{\det(\mu_r)}.$$

Якщо використати співвідношення $\varepsilon_r = n^2$, де n – індекс рефракції, можна переписати останнє рівняння таким чином (поклавши що $\mu_r = 1$ та $\sigma = 1$):

$$-\nabla \cdot \nabla E_z - n_{zz}^2 k_0^2 E_z = 0.$$

Хвильове число k_0 у вакуумі визначається співвідношенням

$$k_0 = \omega \sqrt{\varepsilon_0 \mu_0} = \frac{\omega}{c_0},$$

де c_0 – швидкість світла у вакуумі.

У разі переходу в часову область, робоче рівняння буде таким:

$$\mu_0 \sigma \frac{\partial \mathbf{A}}{\partial t} + \mu_0 \varepsilon_0 \frac{\partial}{\partial t} \left(\varepsilon_r \frac{\partial \mathbf{A}}{\partial t} - \mathbf{D}_r \right) + \nabla \times \left(\mu_r^{-1} \left(\nabla \times \mathbf{A} - \mathbf{B}_r \right) \right) = 0.$$

Його можна спростити, тоді

$$\mu_0 \sigma \frac{\partial A_z}{\partial t} + \mu_0 \varepsilon_0 \frac{\partial}{\partial t} \left(\varepsilon_r \frac{\partial A_z}{\partial t} - \mathbf{D}_{rz} \right) + \nabla \times \left(\mu_r^{-1} \left(\nabla A_z - \mathbf{B}_r \right) \right) = 0.$$

Тут матеріальні рівняння $\mathbf{B} = \mu_0 \mu_r \mathbf{H} + \mathbf{B}_r$ та $\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E} + \mathbf{D}_r$.

Використовуючи співвідношення $\varepsilon_r = n^2$, де n – індекс рефракції, рівняння можна переписати у вигляді

$$\mu_0 \varepsilon_0 \frac{\partial}{\partial t} \left(n^2 \frac{\partial A_z}{\partial t} \right) + \nabla \cdot (\nabla A_z - \mathbf{B}_r) = 0 \; .$$

Використовуючи індекс рефракції, слід пам'ятати, що $\mu_r = 1$ і $\sigma = 1$, тому потрібно застосовувати лише матеріальні рівняння для лінійних середовищ.

РДЕ формулювання для ТМ хвиль. Поля для цього випадку можна записати так:

$$\mathbf{H}(x, y, t) = H_z(x, y, t) = H_z(x, y)\mathbf{e}_z e^{j\omega t};$$

$$\mathbf{E}(x, y, t) = E_x(x, y, t)\mathbf{e}_x + E_y(x, y, t)\mathbf{e}_y = (E_x(x, y)\mathbf{e}_x + E_y(x, y)\mathbf{e}_y)e^{j\omega t}$$

При цьому ε_r та σ означають тензори розмірності 2×2, а μ_{rzz} – відносна магнітна проникність у напрямку *z*.

Гармонічно-часове рівняння для ТМ хвиль

$$\nabla \times (\varepsilon_{rc}^{-1} \nabla \times \mathbf{H}) - k_0^2 \mu_r \mathbf{H} = 0$$

можна спростити до скалярного для H_z :

$$-\nabla \cdot (\tilde{\varepsilon}_{rc} \nabla H_z) - \mu_{rzz} k_0^2 H_z = 0,$$

де

$$\tilde{\varepsilon}_{rc} = \frac{\varepsilon_{rc}^{\mathrm{T}}}{\det(\varepsilon_{rc})}.$$

Або, позначивши $\varepsilon_r = n^2$, маємо

$$-\nabla \cdot (\tilde{n}^2 \nabla H_z) - k_0^2 H_z = 0.$$

У часовій області рівняння для ТМ хвиль спрощується до вигляду

$$\boldsymbol{\mu}_{0}\boldsymbol{\sigma}\frac{\partial \mathbf{A}}{\partial t} + \boldsymbol{\mu}_{0}\boldsymbol{\varepsilon}_{0}\frac{\partial}{\partial t}\left(\boldsymbol{\varepsilon}_{r}\frac{\partial \mathbf{A}}{\partial t} - \mathbf{D}_{r}\right) + \nabla \times \left(\boldsymbol{\mu}_{r}^{-1}\left(\nabla \times \mathbf{A} - \mathbf{B}_{rz}\right)\right) = 0,$$

де $\mathbf{B} = \mu_0 \mu_r \mathbf{H} + \mathbf{B}_r \mathbf{i}$ $\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E} + \mathbf{D}_r$. Використовуючи поняття індексу рефракції, запишемо:

$$\mu_0 \varepsilon_0 \frac{\partial}{\partial t} \left(n^2 \frac{\partial \mathbf{A}}{\partial t} \right) + \nabla \times \left(\nabla \times \mathbf{A} \right) = 0.$$

Тут також можна використовувати лише матеріальні рівняння для лінійних середовищ.

Р*DE* формулювання для гібридних хвиль. Оскільки для розв'язуваних у цьому дослідженні задач використовувалися також і гібридні хвилі, то можна розв'язати пару рівнянь для *TE* і *TM* хвиль разом. Оскільки ці рівняня є незалежними, то їх розв'язують послідовно.

Кінцево-елементна модель. Кінцево-елементну модель ФК 3×3 µм на основі килима Серпинського показано на рис. 1. Вона складається з 12428 трикутних елементів. Квадратні «стовпчики» ФК – арсенід галію (GaAs). Простір між ними – повітря. Збуджувальна плоска хвиля $E_m = 1$ В/м входить у фотонний кристал з внутрішнього торця структури.

Дослідження поширення електромагнітного поля через фрактальний фотонний кристал на різних довжинах хвиль. На рис. 2 - 5 показано розподіл нормальної до спостерігача компоненти електричного поля у площині моделювання на довжинах хвиль 1 µм, 1,5 µм, 2 µм та 3 µм. Дослідження також були виконані для частот, що відповідають довжинам хвиль 1,1 µм, 1,2 µм, 1,3 µм, 1,4 µм, 1,6 µм, 1,7 µм, 1,8 µм і 1,9 µм (результати не показано). Видно (рис. 3), що довжина хвилі 1,5 µм є резонансною для ФК.

Рис. 1. Модель фрактального ФК на основі килима Серпинського

Рис. 2. Довжина хвилі 1,0·10⁻⁶ м

Рис. 4. Довжина хвилі 2,0·10⁻⁶ м

Рис. 3. Довжина хвилі 1, 5 · 10⁻⁶ м

Рис. 5. Довжина хвилі 3,0·10⁻⁶ м

Висновок. Досліджено розподіл електричного поля по фрактальному ФК у площині моделювання. На довжинах хвиль $1,0\cdot10^{-6} - 3,0\cdot10^{-6}$ запропонований фотонний кристал на основі фрактальної структури можна використовувати як електромагнітний фільтр з резонансною довжиною хвилі $1,5\cdot10^{-6}$ м (необхідні подальші дослідження).

Список літератури

- 1. *Борн М*. Основы оптики / М. Борн, Э. Вольф. М.: Наука, 1973. 721 с.
- 2. *Joannopoulos J. D.* Photonic crystals: molding flow of light / J. D. Joannopoulos, R. D. Meade, J. N. Winn Princeton University Press, 1995. 141 p.
- 3. *Skorobogatiy M*. Fundamentals of photonic crystal guiding / M. Skorobogatiy, Jianke Yang. // Cambridge University Press, 2009. 267 p.

А. В. Вишневский

Излучение фотонного кристалла с фрактальной структурой

Предложена 2*D* модель фрактальной структуры на основе двумерного фотонного кристалла, способной выполнять частотную фильтрацию электромагнитных колебаний.

A. V. Vishnevsky

Radiation of photonic crystal with fractal structure

The model 2D of fractal structure on the basis of two-dimensional photonic crystal, capable to perform electromagnetic waves frequency filtration has been considered.