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Abstract—This paper presents a novel approach of observer design for aircraft motion control. The no-
velty of design procedure is based on the application of linear matrix inequality technique. The design
procedure treats the design of both observer and controller by solving the set of linear inequalities simul-
taneously. The proposed approach is free of observer poles placement location. Simulation results dem-
onstrate the validity and effectiveness of the proposed design approach.
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I. INTRODUCTION

The motion of aircraft is considered in a non-
uniform atmosphere. Therefore, the use of control
strategy is necessary for completing aircraft mission
successful. The application of modern control theory
requires all the state variables to be available. Thus,
the control systems developed due to modern control
theory application increase the complexity of the
system. To overcome the requirement of complete
state space vector measurements, observer-based
control systems design has been considered. The
development of observer-based control systems re-
duces the requirement of full phase vector measure-
ments. Observers avoid complexity to the system and
require only computational resources [1]. The ob-
server design was originally proposed in works [2] —
[4]. Lately, the numbers of observer-based control
system design approaches were proposed [5] — [7].

The design of observer-based flight control sys-
tems are successfully applied in the area of small
Unmanned Aerial Vehicles (UAV), satisfying mani-
fold requirements imposed on it [5], [8], [9]. In [5]
the design strategy involves observer design without
reducing the robustness and performance of the sys-
tem. The required level of performance and robust-
ness is kept due to mixed H,/H, optimization

technique.

The survey on observer design is given in [10].

It is shown three main observer design results con-
nected with reduced order, under separation princi-
ple and observers for input fault detection and iden-
tification.

The autopilot design is also may be performed
basing on the available information about the output
variables. This circumstance leads to the problem of
static output feedback (SOF) controller design. The
main advantage of SOF design is that it requires

only available signals from the plant to be con-
trolled. Unfortunately, the output feedback problem
is much more difficult to solve in comparison to
state feedback control problem [11].

The motivation for this research arises from a de-
sire to reduce the number of sensors necessary for
multivariable flight control system (FCS) design for
civil aircraft. The research concerns on finding ap-
propriate solution under linear matrix inequalities
(LMlIs) approach [12] for aircraft control during
flight envelope.

It is known that the design procedure of observer
deals with selecting desired region poles location.
Moreover, the observer eigenvalues should be faster
up to ten times in comparison to plant eigenvalues. It
results in the observer sensitivity to noisy measure-
ment, which is not desirable. To overcome this diffi-
culty the procedure of observer design basing on
Lyapunov approach is proposed.

The main result of this paper is the FCS design
via LMI technique, where the observer gains and
controller structure are defined by solving the set of
LMIs, simultaneously.

To demonstrate the validity and efficiency of the
proposed approach, the longitudinal motion of the
aircraft is considered as a case study.

II. PROBLEM STATEMENT

Let us consider a problem of FCS design with in-
complete state vector measurement. The aircraft
dynamics is represented by the following set of
equations

x=Ax+Bu;
{ X(0)=X0, D

y=Cx,

where xe R" is the state space vector; ue R™is

the control vector; yeRP" is the observation vector.
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Besides that, the state space matrices of the con-
trolled plant have the following dimen-

sions A e R™™ ,BeR™™", CeR”™. It could be seen
that number of measuring variables p is less than

number of all phase coordinates, n. Thus, to design
the FCS the full state space vector is necessary to be
restored.

In this paper we develop the procedure of full-
order state observer design with further state feed-
back construction such that the performance of
closed-loop system satisfies selected performance
criterion. Thus, the FCS design is performed under
the well-known separation principle [5].

III. OBSERVER-BASED FLIGHT CONTROL
SYSTEM DESIGN

It is known that the observer estimates the state
variables based on measurement of the output y and

control u variables [2] — [4]. Let us consider the
procedure of observer-based FCS design under LMI
approach.

Consider linear time-invariant system given by
(1). Assume that the states x are approximated by
the states x. The observer model takes into account
feedback information about observation error and
can be represented as

()= Ax) B L0 y0)
= A%(7)+Bu(t)+LC(X(r)-x(¢)),

where (x(z) - i(t)) =e(r) is the difference between

the real and estimated states (observation error); L is
the observer gain matrix that has to be chosen such
that the observation error approaches zero as time
increases. From (1) and (2) the observation error
dynamics equation takes the following form

e(1)=(x(1)-%(1)):
x(¢)-x(¢)=Ax(t)+Bu(t)
—(A%(¢)+Bu(¢)+ LC(X(t) - x(1))) 3)
—(A+LC)e(t).
The error decays to zero if it is possible to find

observer gain matrix L such that (A+LC) is
asymptotically stable. Moreover, the eigenvalues of

(A+LC) are the same as those of (AJrLC)T =
=AT+C'L.

The final goal is to control the motion of the
plant basing on the estimated states. Thus, for the

state feedback control based on observed state va-
riables X, namely

u=Kx, 4)

where K is the constant state feedback gain matrix
that assures that the system is asymptotically stable,

the state equation becomes
x(1)=Ax(1)+BKX(r)=Ax(¢) )
+BK(x(¢)—e(r))=(A+BK)x(t)-BKe(t).

Combining together (3) and (5), we obtain
x(r)| [A+BK -BK | x(z) ©
e()| | 0  A+LC|e(r)]|
Equation (6) describes the dynamics of the ob-

served state feedback control system. The character-
istic equation for the system is

|sT-A-BK|sI-A-LC=0.

It is possible to rewrite the system dynamics in
terms of plant and observer states, respectively.

x())] [ A BK x(t)
x(t)| |[-LC A+BK+LC|%(7)]|
It is supposed also that the obtained solution
given by (4) minimizes the performance index as

J=I(i(t)TQi(t)+u(t)TRu(t)) dr

~ [%(1)" (Q+K"RK)x(r) dr,

(7

where Q and R are diagonal matrices, weighting
each state and control variables, respectively.
This cost depends on the trajectory i(z) taken,

such that the worst trajectory will correspond to the
worst cost [13].

It is known that the observed-state feedback con-
trol system design consists of two stages: (1) to de-
sign a state feedback control law assuming that all
states are available; (2) to design a state estimator to
estimate states of the system. Replace the states in
state feedback control law from stage (1) by the state
estimates. Further, they can be combined to form the
observed-state feedback control system. This prin-
ciple of independent state feedback and observer
design is referred to as separation principle [5].
Moreover, the observer design deals with choice of
poles location. They are usually chosen such that the
observer response is much faster that the system
response, but very fast observers possess noise. The
proposed approach solves the problem of observed-
state feedback design under LMI technique. The
main advantage of the proposed design procedure is
that there is no need to define the observer poles
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location. The solution of this problem via LMIs
gives the constant state feedback gain matrix K and
observer gain matrix L by solving a set of LMIs
simultaneously. The proposed design procedure is
very simple and utilizes Lyapunov approach.

The simultaneous observer and controller design
can be formulated with following theorem.

Theorem. The observer-based system (6) is said
to be statically stable by means of state feedback (4)
if there exist matrices X, =X/ >0, M and

X,=X] >0, Z and satisfy the following condi-
tions:

X,AT+AX,+M'B"+BM XQ"” M'R"

Q"’X, -1 0 |<0,
R”’M 0 -1
X, =X/ >0, (8)
A'X, +X,A+C'Z" +ZC<0,
X, =X] >0. ©)
Proof. Let V,(x¢)=x(¢)Px' (f) with

P, =P' >0 be a candidate Lyapunov function. The

closed loop system (6) preserves stability and mini-
mizes the performance index (7) if:

V,(x,¢)+x"()Qx(¢)+u" (t)Ru(¢)<0. (10)
The condition (10) leads to the following inequal-
ity:
x'(t){A"P,+P,A+K'B'P, + PBK + Q + K'RK |
XX (t) <0.
Pre-multiplying and post-multiplying right and left

sides above written inequality by P~':

P'A"+AP ' +P'K'B" +BKP;" an
+P'QP " + PT'K'RKP, ! <0.

Let us define the following change of variables
X, = Pfl, M= KP{I,K =MP, and rewrite inequal-
ity (11) as

X,A"+AX, +M'B' +BM+X,QX,

(12)
+XK'RKX, <0.

By applying Shur’s Lemma to inequality (12) it
is possible to rewrite it as matrix inequality:
X,AT+AX,+M'B"+BM XQ"” M'R"
Q"X -1 0
R”’M 0 -1

<0.

This part of the proof considers the design stage
(1) according to the separation principle. The second
part of the proof considers stage (2) of the design
procedure connected with observer development.

Let V,(e(t).t)=e(t)P,e’ (1) with P,=P} >0
be a candidate Lyapunov function. The observer

gains can be found if the following inequality is
hold:

e (1){(A+LC)" P, +P,(A+LC)}e() <0,

A'P,+P,A+C'L'P, +PLC<0.

The use of the following change of vari-
ables X, =P,, P, L =Z reduces to the next LMIs:

A™X, +X,A+C'Z" +ZC<0,
X, =X, >0.
Thus, the observer gains can be evaluated as
L=X;'Z.
IV. CASE STUDY

The state space linearized longitudinal model of
large four-fanjet Boeing 747 aircraft flying about
equilibrium point (Mach=0.198) is used as a case
study.

The main geometrical characteristics of the given
aircraft are:

— wing reference area, S = 5500 ﬁz;

— wing span, b = 195.68 ft;

— mean geometric chord, ¢ =27.31f%;

The moments of inertia:

I, =18.2x10°slug — fi*;
1, =33.1x10°slug —1f *;

1. =0.97x10°slug — ft*;

The state space vector of Boeing 747 longitudinal
channel comprises the following variables:
x=[V,,a,q,6, h]T , where V, is the true airspeed of
aircraft, a is the angle of attack, ¢ is the pitch, 0 is
the pitch angle rate and h is the altitude. The control
input vector u=[3,,8,]" is represented by elevator
deflection and throttle lever displacement corres-
pondingly.

It is considered operating mode with true air-
speed at V; = 67.4 m/s. The linear model in state
space is represented by the matrices[A, BJ:
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[-0.0209  0.0018 0 -9.81 0] 00100

0.0030 -0.5120  1.0000 0 0 C=|0 0 01 0.

A=| 0.0002 -0.1108 -0.3736 0 01; 0 0 0 01
0 0 1.0000 0 0 Disturbance, v affecting the longitudinal motion of
. 0 —67.3922 0 67.3922 0| the aircraft involves the following components: the
_ _ true airspeed, V,, angle of attack, a and pitch rate, ¢,

0.9590 0.0001 T _
so that nz[K , 0, g ] . In order to simulate the
—0.0953 0 L

B=|—-03764 o |- atmospheric turbulence the Dryden filter is used [13].
e ’ It is considered that aircraft flies at moderate turbu-
0 0 lence. To generate a signal with the correct characte-
0 0 ristics, a unit variance, band-limited white noise sig-

The output vector of measured variables is given
as follows y=[q, 6, h]T. Thus, the observation ma-
trix has the following structure:

2L
H (s)=o0, “ ! ;
v 1+—*gs

Vv

H,(s)=0,

The transfer function of forming filter along the
variable w is possible to rewrite in terms of the vari-
able the angle of attack, a according to the phase
vector. Thus, for small angles

w
o=—, where U, =V,.
0

Parameters appearing in the transfer functions of
the forming filter are given as follows [13], [14]:

b=59.64m;L,=L,,=533.3m;
oy=0,~1.542 m/s,

where b is the aircraft wingspan; Ly, L, are the ap-
propriate turbulence scale lengths; oy, o, are the
appropriate turbulence intensities. The computation
of these values depends on the altitude at which the
aircraft is flying, wingspan and type of turbulence
according to standard MIL-F-8785C [14].

The weighting matricesQ , R in (7) have the
structure:

Q =diag(0.024-[0.8001 0.1288 0.055 250.11 0.01]) ;
R =diag([2 0.4]).

nV
(1

nal is passed through appropriate forming filter.

The transfer functions of forming filter according
to standard MIL-F-8785C [13], [14] used in simula-
tion to account external disturbances have the fol-
lowing structure:

3L,
P
L

w

2;
=
14

1+

N

W

H ,(s).

By applying the proposed approach of observer-
based controller design under LMI technique, the
state feedback gain matrix K and observer gain
matrix L are found. Their numerical values are giv-
en below:

— state feedback gain matrix:

1 0.2005 5.2133 -22.4525
~10.000027 -0.00019 0.000017
-23.4080  -0.0377

-0.00020 0.0000012

|

— observer gain matrix:

[0.0182 -9.8723 17.3514 |
0.9210 0.0688 -77.8686
L=|0.1263 0.4942 -0.0855
0.4815 0.5000 30.0388

1-0.0002 33.6840 0.6971 |

Table 1 reflects standard deviations of the air-
craft outputs.

TABLE 1

STANDARD DEVIATIONS OF BOEING 747 OUTPUTS IN A STOCHASTIC CASE

Standard deviation

Plant

o

O, , m/sec o

cy,° c,,° /sec c,,m

V=674m/s 0.1634 0.0936

0.0458 0.0134 0.7403
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Performance indices of closed loop system with ob-
served state feedback in a loop are given in Table 2.

The simulation results of the closed loop system
taking into account the influence of the random
wind, simulated according to the standard Dryden
model of turbulence confirm the efficiency of pro-
posed approach. Results of the simulation are shown
in Figure.

Time Series Plot!

alpha

time,s

a

Time Series Plot:

=1 05

05

time,s

c

TABLE 2

PERFORMANCE INDICES OF CLOSED-LOOP SYSTEM

Plant
Performance Index
V=674m/s
H,-norm 0.6194
H_,-norm 1.2791

Time Series Plot:

theta

. , . .
0 50 100 150 200 250
time,s

b

Time Series Plot:

60

0 50 100 150 200 250
time,s

d

Simulation results of longitudinal motion control in the presence of external disturbances:
a is the angle of attack, deg; b is the pitch angle, deg; ¢ is the pitch rate, deg/s; d is the altitude, m

CONCLUSIONS

As far as the incomplete state space vector is
available for measuring, the flight control system for
aircraft can be easily designed by applying observer.
Thus, the unavailable states can be suitable approx-
imated by restored states. The proposed solution is
very simple and uses Lyapunov approach. The pro-
posed design procedure can be solved efficiently by
applying LMI optimization technique. The main
advantage of the proposed approach is that there is
no need to define the region of observer poles
placement. The proposed approach permits to define

the observer gains and state feedback gain matrix
directly from a set of LMIs, simultaneously.
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M. M. KomHaubka, A. M. Kaina, 5SI. A. Bepe3ancbkuii, I. B. Kinisn. IIpo onuH miaxin mo cuHTe3y cucTeMH
YIPaBJIiHHS M0JBOTOM 3i cocTepirauem

[IpencraBneHo HOBHU MiAXiK O CHHTE3y CHCTEMH YIPAaBIiHHS IMOJLOTOM 3i crocTepiraueM. HoBu3Ha 3anpomoHoBaHO-
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OOTPYHTOBAHICTh Ta €(hEKTUBHICTH 3aIPOTIOHOBAHOTO ITiIXOTY.

KuiouoBi cioBa: cuctema yIpaBIIiHHS ITOJIBOTOM; JIiHIHHI MaTpUYHI HEPIBHOCTI, CHHTE3 CIIOCTEpirava; 3BOPOTHHIMA
3B’SI30K 32 CTAHOM; T€OpEMa PO3/UICHHS; OI[iIHIOBaHHS CTaHiB.
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HamnpaBienue Hay4HOH IESATENEHOCTH: CUCTEMBI YIIPaBJICHHS M 00paboTKa HH(OPMALUH.
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