Estimation algorithm of arbitrary dynamics object state under random actions and incomplete measuring by unstable system

V. N. Azarskov, А. U. Kurganskyi, G. I. Rudyuk


The article proposes estimation algorithm of linear time-invariant systems with arbitrary dynamic behavior of control object and measuring system subject to real operating conditions


Algorithm; dynamics model; estimation system; vector; matrix; random process; spectral density; stabilization object


Naumenko, K. I. (1984). Observation and controlling the movement of dynamic systems. Kyiv, Naukova dumka Publ., 208 p. (in Russian).

Gantmacher, F.F. (1967). Theory of Matrices. Moscow, Nauka Publ., 575 p. (in Russian).

Blochin, L. N. (1982). Optimal stabilization systems. Kyiv, Technika Publ., 143 p. (in Russian).

Davis, M. С. (1963).“Factoring the Spectral Matrix”. IEEE Trans. Auto. Cont., AG-8, no. 4. рр. 296–305.

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.