A.V. Vishnevsky The binary weight matrix of an electronic composer algorithm 105
MATHEMATICAL MODELING OF PROCESSES AND SYSTEMS
UDC 681.5.013 (045)
A. V. Vishnevsky

THE BINARY WEIGHT MATRIX OF AN ELECTRONIC COMPOSER ALGORITHM

National Aviation University, Ukraine, Kyiv
E-mail: av@nau.edu.ua

Abstract—The binary realization of logical structure, that can be represented as weight matrix of a
neural network electronic composer — has been offered.

Index Terms—Digital music; electronic composer; neural network; information processing; artificial

intelligence.
1. INTRODUCTION

The work of neural network is determined by its
weight matrix — states the principle of connectionism.
And we can say, that neural network (NN) based musical
processing routine can be described by this matrix (or
these matrices), too.

So, for our study it can be undoubtedly said, that the
weight coefficients matrix (WM) has paramount
importance. Let’s examine closer this matrix, and take
care of it’s structure and role for digital music processing.

II. ANALYSIS OF RESEARCHES AND PUBLICATIONS

A very solid basement for the future building of the
artificial intelligence (Al) model of an electronic
composer has been proposed in [1]. A good example of
real achievements in this direction are works [2], [3].
Source of inspiration for current paper is [4-6]. [7] is a
preceding publication of the author of this paper on the
topic of research.

III. THE NEURAL NETWORK MECHANISM

Before beginning composing digital music, you need
to have an exact notion of how to do it.

This notion gives a direction, in which in future is
developed a specific programming digital music composing
routine. The routine presented in this paper is based on
the following structural scheme (Mathlab generated).

Figure 1 shows a generalized view of the neural
network digital music processing scheme realization. Here
TDL represents a time delay unit, tansig is a transfer
function being used, bias is the an integer value in range [-
255; 255], netsum is the adder of the weight coefficients
and the bias. In this scheme the WM circuit block, which is
the most important element for this scheme, hasn’t been
shown yet. It’s revealed in Fig. 2. here Mux stands for
multiplexor unit, dotprod is a logical operation of dot
product, weights is the NN weight coefficients (for case of
10-neuroned feedforward network).

AH

netsum tansig a{1}

dotpred10

WA Y

IWE1, 1410,

7
Fig. 2. The weight coefficients block

© National Aviation University, 2015
http://ecs.org.ua

106

ISSN 1990-5548 Electronics and Control Systems 2015. N 1(43): 105-109

At this picture the inner philosophy of two digital
music processes routing has been delivered, of
which the first being vector p[i] (our initial signal,
coming from the output of generator of control
signals), when the second being w[i] (vector of the

weight coefficients of WM).
IV. THE EQUATION

A matrix equation connecting input (P), weights
(W) and output (4) is showed below. It works for
any NN-structure imaginable (it’s written out here
without taking into account biases vector B).

W],] W],... W],i P] A]
Woo W wolslP.=A4..
Wi W Wull B 14

Or, alternatively, the neural network based
musical sequence processing algorithm, conveyed in
this paper, can is written by formula

W , (1)

where W is the matrix of weight coefficients; P is
the input musical sequence (pattern); A is the output
musical sequence (abaculus).

Let’s designate by symbol of logical “1” note D,
and by symbol of logical “0” note 4. The input

sequence P will look like is shown in Fig. 3.
1

P|=|A

() + \ \

Y AL) [
VA [
© "

o) o o

Fig. 3 Initial sequence for example one

The matrix of weight coefficients W for example one
will have the following form (if we continue to use same
notes for “1” and “0”) (Fig. 4).

1
04 I
Y AL) N
GFs "oy -
v < =

Fig. 4 The weight coefficients matrix for example
one in staff view

As we can see, as a result of input sound
sequence neural-network-based processing, the
output sequence A will be different from the initial
one. Figure 5 represents this transformation:

1

() H \ \

v C
P af T [
[[an WKL,

U

DR

Fig. 5 Output sequence for example one

The mathematical notation for this example will have
the classical matrix-multiplication-style form, derived
from (1):

1 1 1|1 1+1+1 1
1 0 1}0[=[0+0+0]|=]0].
0 0 Of|l] [0+0+0{ |0

So, we’ve processed our music!

Let’s add, that W-matrix from example one had
“zero-triangle” form. This, and different other forms that
we will use or we could use (but won’t in this paper
because of lack of space and time) remind very well the
Kohonen’s neural network weight matrix construction
concept. For this reason one can think of presented in this
paper algorithm as a partially Kohonen’s network related
algorithm.

Two next W-matrices can be referred to as “zero-
rhomb” matrix (first), and “one-rhomb” matrix (second).

0 1 1+0+1] |0
0 0 O0p0[=|0+0+0|=]0|,

0 1 1+0+1] |0
0 1 Ol (0+1+0] |1

0 1f+0[=|0+0+0]|=|0|.
0 1 Ol (0+1+0] |1

A collection of these W-matrices can be used by an
electronic composer like a kit of lead letters can be used
by a compositor:

I+1+1
0 0 O0F0[=]0+0+0[=|0] (“1’-comb),
I+1+1
0 0O 0+0+0] [0
1 1[0[=]0+0+0[=|0] (“0”-comb),
0 0O 0+0+0] [0
1 0 1{1f [1+0+1| |0
1 0 10[=[0+0+0/=[0| (mirror “l”-comb),
1 0 1{1f [1+0+1| |0
0 1 Ol [0+1+0] |1
0 1 0F0]=0+0+0|=[0] (mirror “0”-comb), etc.
1 Ol |0+1+0] |1

It is an interesting fact, that the WM can be thought of
as P column-matrix, when appropriate W matrix from (1)
may be referred to as input musical sequence. In this case
WM instantaneously processes not only harmony, but the
melody, too. The size of melodic line being processed is
determined by size of W matrix. And not only one

A.V. Vishnevsky The binary weight matrix of an electronic composer algorithm

107

melody can be processed, but several. The number of
melodies treated equal to WM size. If this number is too
big, WM can be filled with zeros at lower rows.

V. PROGRAM REALIZATION

Console application C++ code for main() function is
listed below.

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "C:\...\lw.h"
#include "C:\...\dw.h"

int g[100];
int d[120];
int 1[100];
int fin([4];

FILE *stream;

int tmain(int argc, _TCHAR* argv([])

{

{
qll]1="M";q[2]="T"';ql3]="h';q[4]1="d"';q[5]=0;

ql6]=0;q[71=0;q[8]=6;9[9]=0;q[10]=1;q[11]=0
q1121=2;q[13]1=0;q[14]=120;q[15]=77;[16]=84
;all171=114;9[18]1=107;q[19]1=0;g[20]=0;gq[21]=
0;
q[221=46;q[231=0;q[241=255;q[25]=3;q[26]=8;
ql27]1="u';ql[28]="n';q[29]="t';q[30]="i"';ql[3
1]1="t';q[32]="1";q[33]="e';q[34]="4d";
ql[35]1=0;9[36]1=255;q[37]1=1;9[381=5;q[39]="S"
;q40]="a';ql41]="s"';ql42]="h';ql43]="a';ql
441=0;q[451=255;9[46]1=88;q[47]1=4;9q[48]1=4;¢q]l
491=2;
q[50]1=24;q[51]1=8;q[52]=0;q[531=255;q[541=89
;q[55]1=2;q[56]=0;9q[57]=0;
ql[58]1=0;g[59]1=255;q[60]1=81;q[61]=3;q[62]=9;
ql[63]1=39;q[64]=192;
qg[65]1=0;9[66]1=255;q[67]1=47;q[68]1=0;9[69]1=77
;q[70]=84;g[71]=114;
q[721=107;q[731=0;q[74]1=0;q[75]=0;q[76]=61;
ql771=0;q[78]1=144;

fin[1]=255;

fin[2]=47;

fin[3]1=0;

stream = fopen ("DUMMY.mid", "w+");

for(int 1i=1;i<=78;1i++)
{

fprintf (stream,
}

srand (29) ;
fclose (stream) ;

no

, alil);

/1717777777777 7777777/77777/tgt sequence

srand(12);1w. 32(4);srand(6);1lw. 32(8);sran
d(7);1w. 32(8);srand(50) ;dw. 32(4);srand (50
0);dw. 32(4);srand(19);dw. 32(4);srand(46);
lw. 32(8);srand(99);1w. 32(8);srand(1l);1lw.

32(8);srand (30);
/1707777777777 77777777777777

stream = fopen ("DUMMY.mid", "a+");
for (int 1i=1;i<=3;1i++)

{

fprintf (stream, "%c", fin[i]);

}

/* close the file */
fclose(stream);

}

return 0;

}

This code represents by itself an “engine” for the Al
NN electronic composer. Grafical user interface (GUI)
implementation is not given here, though it has been
developed successfully.

A part of one of header files (for diatonic composing)
where musical information processing classes are stored,
is included.

#ifndef 1wH
#define 1wH

class light water

{

public:

int w,wl,w2;

int 1([52];

double W[3]I[3];

int b;

int tonic_accord[4];
int boo;

void 32 (int length);
void 16(int length);
void 16W(int length)
void 8 (int length);
void 4 (int length);

’

void toniclé6 (int length);
light water();

FILE *stream;

}lw;

light water::1light water()

{
/177777777 77/7/////tonic_accord[3]
tonic_accord[1]=48;
tonic_accord[2]=52;
tonic_accord[3]=55;

//for
//{
//for
//{
//W[i]l [J]1=(double) rand ()
//}

//}

(int i=1; i<=3; i++)

(int j=1; j<=3; J++)

/ RAN D MAX;

//weight coefficients

W[1][1]1=0.22;// (double)rand()
[1][2]=0.22;// (double) rand ()
(1] [3]1=0.22;// (double) rand()

/ RAND MAX;
W / RAND MAX;
W / RAND MAX;

/7777777777 ////1ight water array

108 ISSN 1990-5548 Electronics and Control Systems 2015. N 1(43): 105-109

1[11=40; 1[2]=41; 1[3]1=43;
1[41=45; 1[51=47; 1[6]1=48; 1[71=50;
1[8]1=52; 1[91=43; 1[10]1=55;
1[111=57; 1[121=59; 1[131=60; 1[14]1=62;
1[151=64; 1[16]=65; 1[17]1=67;
1[181=69; 1[191=71; 1[201=72; 1[21]1=74;
1[221=76; 1[231=77; 1[241=79;
1[25]1=81; 1[26]1=83; 1[27]1=84; 1[28]=86;
1[29]1=88; 1[30]1=89; 1[31]=91;
1[032]1=93; 1[331=95; 1[341=96; 1[35]1=98;

1[36]1=100;1[371=101;1[381=103;1[39]1=105;1[4
01=107;1[41]1=108;1[42]=110;

1[43]=112;1[44]=113;1[45]=115;1[46]1=117;11[4
71=119;1[48]1=120;1[49]1=122;
1[50]1=124;1([51]1=125;11[52]=127;
}
void light water:: 16 (int length)
{
stream = fopen ("DUMMY.mid", "a+");
//1light water
length=length*16;
for(int i=1;i<=length;i++)
{

w=random (32) +1;
}

fclose (stream) ;
}//end 16

void light water:: 16W(int length)
{
stream = fopen ("DUMMY.mid", "a+");
//1light water
length=length*16;

for(int i=1;i<=length;i++)

{

//this is the genetic algorithm

b=22;

w= (int) ((random(51)*W[1l][1]+b) +
(random (51) *W[1] [2]+Db) +
(random (51)*W[1] [3]1+b)) /3 ;

}
fclose (stream) ;
}//end_16W

void light water:: 8 (int length)
{
stream = fopen ("DUMMY.mid", "a+");
//1light water
length=length*8;

for(int i=1;i<=length;i++)

{

w=random (42) +1;
}
fclose (stream) ;

}//end 8

#endif

Graphical user interface on one hand makes a better
performance of the program for a wuser (intuitive
simplicity of work), on the other hand — allows to start
visualisations, especially needed when dealing with
musical therapy applications (it has been studied that
music lowers blood pressure, boosts immunity, eases
muscle tension, reduces stress, increases/decreases
energy, influences emotion, produces changes in brain
wave activity, lowers the breathing /heart rate, relieves
repression /anxiety).

CONCLUSION

The AI NN model of an electronic composer scheme
and the WMs has been given in this paper. This neural
scheme has been translated into a PC program, that helps
to compose digital music. It is a feedforward NN that can
be realized both in one- or multilayered versions.

The number of hidden layers depends on a kind of
musical task set. A lack of feedbacks and target vectors
in this model leads to a very quick “on-line” processing
mode, that allows to compose large musical texts very
rapidly. This helpful instrument is able to significantly
reduce a lot of monotonous work when creating musical
texts of a steady emotive temper.

The weight matrix model for case of binary form of
weight coefficients is proposed in two different variants.

ACKNOWLEDGMENT

The author would like to acknowledge Dr. Sc., Prof.
V. V. Vasilyev, Dr. Sc., Prof. A. Y.Beletsky and Dr. Sc.,
Prof. A. V. Solomentsev for any support of this research.

REFERENCES

[11Gloushkov, V. M.; Introduction to Cybernetics.
Academic Press, New York, 1966. Published in Russian,
1964., 324 p.

[2]David, Cope. “Experiments in Music Intelligence”.
In Proceedings of the International Computer Music
Conference, San Francisco: Computer Music Assn, 1987.

[3]1Wiggins, G. A. Computer Models of Musical
Creativity: A Review of Computer Models of Musical
Creativity by David Cope. Literary and Linguistic
Computing, 2007. no. 23 (1), pp. 109-116.

[4]http://en. wikipedia. orz/wiki/The
Well-Tempered Clavier

[5]Johann Sebastian Bach. Das Wohltemperierte
Klavier I BWV 846—869 / Nach dem Autograph und
Abschriften hrsg. von W. Dehnhard. Wien: Wiener
Urtext Edition, 1977.

[6]Johann Sebastian Bach. Das Wohltemperierte Klavier II
/ hrsg. von W. Dehnhard. Wien: Wiener Urtext Edition, 1983.

[71Vishnevsky, A. V. “The neural scheme of an
electronic composer”. Electronics and control systems.
2013, no. 1 (35), pp. 107-110.

Received 06 February 2015.

A.V. Vishnevsky The binary weight matrix of an electronic composer algorithm 109

Vishnevsky Alexander. Ph.D. Associate professor.

Institute of Aeronavigation, National Aviation University, Kyiv, Ukraine.
Education: Kiev International University of Civil Aviation, Kyiv, Ukraine (1995).
Research area: information processing

Publications: 32.

E-mail: av@nau.edu.ua

O. B. Bummniscbkuii. Binapaa Baropa MaTpuus aaropurMy eJIeKTPOHHOT0 KOMIIO3MTOpa

3anpornoHoBaHo OiHApHY peali3aiilo JIOTIYHOI CTPYKTYpPH, SIKY MOXKHA TPEICTAaBUTH Yy BUIIISALI BaroBOi MAaTpHII
HEWPOMEPEKEBOTO EJIEKTPOHHOTO KOMIIO3UTOPA.

Karwudosi cioBa: mudpoBa My3uka; eneKTpOHHHI KOMIO3UTOp; HEHpOHHA Mepexka; oOpoOka iHdopmanii; mTydHHiH
IHTEJIEKT.

BunmiBcbkuii Onexcanap BoaoguvupoBud. Kanmunar texHigvHux Hayk. JlomeHT.
IHcTuTyTYT aeponasiraunii, Hamionansuuii ABianiiiauii YHiBepcrurer, Kuis, Ykpaina.
Ocsirta: KuiBcbkuit MibkHapoqHUil yHIBEpCUTET IMBLIBHOI aBianii, KuiB, Ykpaina (1995).
HamnpsiMok HaykoBOI isutbHOCTI: 00p0o0OKa iHpopMarii

Kinpkicts myOmikarii 32.

E-mail: av@nau.edu.ua

A. B. BumineBckuii. Bunapnasi BecoBasi MaTpulia ajJiropuTMa JJIeKTPOHHOI 0 KOMIIO3UTOpa

[IpemtokeHa OMHApHAS peaTu3anus JOTHISCKON CTPYKTYPHI, KOTOPYIO MOXHO TIPEACTAaBUTh B BUIE BECOBOH MaTPHIIBI
HeMpoceTeBoro AeKTPOHHOT 0 KOMIIO3UTOpA.

KiroueBble cioBa: muppoBas My3bIKa, SJICKTPOHHBIA KOMITO3UTOp; HEHPOHHAs CeTh; 00paboTka WH(pOpPMAIIUY;
HCKYCCTBEHHBIH UHTEIJICKT.

BummneBckuii Anexcanap BaagumupoBuu. Kanaunat texundeckux Hayk. JIOeHT.

HNucTuTyTyT MH()OPMAIMOHHBIX IMATHOCTUYCCKUX CHUCTeM, HaluoHaNbHBI ABHAIMOHHBIA YHHUBepcuTeTa, Kues,
VYkpauna.

O0pasoBanue: KreBckuii Mex1yHapOIHbIH YHUBEPCUTET rpaxkiaHckoi aBuanuu, Kues, Ykpauna (1995).
HamnpagieHue HaydHOU AEATEILHOCTH: 00pab0oTKa HH(pOpMAIIUH.

KonmuectBo myoiukarmii: 32.

E-mail: av@nau.edu.ua

