УДК 681.518.5 (045)

В. М. Синеглазов, д-р техн. наук, проф.,

В. Н. Белый

АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ КОНТРОЛЯ АВИАЦИОННОГО ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ

Институт аэрокосмических систем управления HAУ, e-mail: iesy@nau.edu.ua

Предложена структура автоматизированной системы контроля авиационного электронного оборудования, которая имеет наращиваемую модульную архитектуру. Приводятся нормативные требования к измерительным каналам.

Ключевые слова: испытательный стенд, датчики, автоматизированная система.

Введение. Испытания авиационного электронного оборудования проводятся на двух этапах жизненного цикла изделий: на этапе разработки и на этапе производства. На этапе разработки проблемы возникают, когда необходимо измерить и обработать большой объем данных, например, оценить временную стабильность источника напряжения или изменение в течение суток напряженности электрического поля радиопомех, коэффициент корреляции между погрешностью измерительного прибора и напряжением питающей сети. На этапе серийного производства проблемы связаны с большим количеством продукции, для каждого экземпляра которой необходимо выполнить весь объем приемо-сдаточных испытаний, записанных в технических условиях. В последнем случае трудоемкость испытаний может вносить существенный вклад в себестоимость изделия. Решением этих проблем может быть автоматизация испытательного стенда с помощью компьютера, при которой доля зарплаты в себестоимости испытаний становится пренебрежимо малой, а достоверность результатов и качество продукции существенно повышаются. Компьютер в автоматическом режиме может измерить и построить, например, график зависимости эффективной разрядности аналогоцифрового преобразователя (АЦП) от температуры или зависимость погрешности вольтметра от входного напряжения.

Испытательный стенд в общем случае состоит из источников воздействий (электрических, механических, химических, климатических и т.п.) на испытуемый прибор и средств измерения результатов этих воздействий. Источники электрических воздействий и средства измерений могут подключаться к испытуемому прибору с помощью коммутатора на электромагнитных или электронных реле. Задачу автоматизации испытаний можно решить достаточно быстро с высокой степенью достоверности результатов и с высокой точностью, если центральное место в стенде займет обычный компьютер, снабженный органами взаимодействия с окружающим миром — датчиками и исполнительными устройствами.

В этой работе предлагается "конструктор" для сборки такой автоматизированной системы. В его состав входят:

- компьютер с Windows NT/2000/XP;
- программа MS Excel со встроенным языком программирования Visual Basic for Application;
 - набор ActiveX элементов, встраиваемых на лист MS Excel;
- на базе набора повсеместно принятых спецификаций, предоставляющих универсальный механизм обмена данными в системах контроля и управления OPC (OLE for Process Control) OPC сервер для связи компьютера с модулями ввода-вывода;
- модули ввода сигналов термопар, термопреобразователей сопротивления, универсальный модуль аналогового ввода, модуль ввода частотных сигналов, счетчик, модули ввода дискретных сигналов; модули вывода напряжения и тока, модули вывода дискретных сигналов, модули релейной коммутации, преобразователь интерфейса;

– промышленная сеть на основе двухпроводного интерфейса RS-485, соединенная с офисной сетью Ethernet.

Структура системы позволяет добавлять в нее оборудования сторонних производителей.

Предлагаемая система имеет наращиваемую модульную архитектуру. Модули конструктивно выполнены в отдельных корпусах, что позволяет физически располагать их возле соответствующего оборудования (например, модули регулирования температуры – возле камеры тепла и камеры холода, модуль аналогового ввода – возле вибростенда, модуль релейной коммутации – возле испытуемого прибора и т. п.).

Наращиваемость обеспечивается применением сети на основе двухпроводного интерфейса RS-485, который осуществляет информационную связь между модулями системы и управляющим компьютером. Набор компонентов системы образует "конструктор", который позволяет собрать любую автоматизированную систему для испытания электронной аппаратуры, в частности для приемо-сдаточных испытаний серийной продукции. Благодаря наличию в составе системы компьютера и удобного программного обеспечения под Windows появляется возможность полной замены ручной работы на автоматизированную.

Нормативная база разработки испытательного оборудования. Ответственность за результаты испытаний, проводимых в процессе разработки аппаратуры и исследования новых принципов ее построения, берет на себя сам разработчик. При процессе же производства продукции, подлежащей обязательной сертификации, достоверность приемосдаточных испытаний должно гарантировать государство с целью защиты потребителей от поставки на рынок продукции, не удовлетворяющей обязательным требованиям стандартов. Поэтому методика приемо-сдаточных испытаний и использованная для испытаний аппаратура должны быть аттестованы комиссией, в состав которой входят представители метрологической Укрметртестстандарт[2]. органов государственной службы аттестацией испытательного оборудования понимают определение нормированных точностных характеристик и их соответствие требованиям нормативных документов, а также установление пригодности этого оборудования к эксплуатации.

Аттестация испытательного оборудования выполняется по ДСТУ-3400–2006, согласно которому для аттестации испытательного оборудования, используемого при обязательной сертификации продукции, при испытаниях продукции на соответствие обязательным требованиям государственных стандартов и производстве продукции, поставляемой по контрактам для государственных нужд, должны применяться средства измерений утвержденных типов. Необходимо, чтобы эти средства проходили первичную поверку и подлежали периодической поверке в процессе эксплуатации, а методики выполнения поверки – аттестации.

Для средств измерений, используемых в сферах, на которые не распространяется действие государственного метрологического контроля и надзора, поверка может быть заменена калибровкой. Между поверкой и калибровкой имеются принципиальные отличия. Поверка средств измерений — это совокупность операций, выполняемых органами государственной метрологической службы с целью определения и подтверждения соответствия средства измерения установленным техническими требованиям и выполняемая для средств измерений, используемых в сферах, на которые распространяется действие государственного метрологического контроля и надзора.

Поверка выполняется физическим лицом, аттестованным в качестве поверителя органом Государственной метрологической службы. Калибровка же выполняется для приборов, которые используются в сферах, на которые не распространяется действие государственного метрологического контроля и надзора и может выполняться метрологическими службами юридических лиц, не имеющими аккредитации на выполнение поверки.

Аттестация испытательного стенда выполняется при его вводе в эксплуатацию (первичная аттестация) и в процессе эксплуатации (периодическая аттестация). Для аттестации подготавливаются эксплуатационные документы по стандарту [2], программа и методика первичной и периодической аттестации. В процессе первичной аттестации устанавливают: возможность воспроизведения внешних воздействующих факторов или режимов функционирования объекта испытаний, отклонения условий испытаний от нормированных значений, обеспеченность безопасности персонала и отсутствие вредного воздействия на окружающую среду, а также перечень характеристик испытательного оборудования, которые проверяют при его периодической аттестации.

Архитектура системы. Архитектура электронной части предлагаемой системы показана на рис. 1 и 2.

Система состоит из компьютера, набора необходимых датчиков, измерительных преобразователей, устройств АЦП и ввода сигналов в компьютер, устройств вывода и исполнительных устройств. Множество устройств ввода-вывода могут быть объединены в промышленную сеть на основе интерфейса RS-485 (рис. 1), а компьютеры, входящие в состав системы, могут быть подключены к сети Ethernet (рис. 2), что позволяет наблюдать процесс испытаний или управлять им с любого компьютера сети, пользуясь технологией DCOM фирмы Microsoft, воплощенной в *OPC*-сервер [3].

Рис. 1. Автоматизированная система

Состав системы. Существует огромное разнообразие датчиков (температуры, влажности, давления, потока, скорости, ускорения, вибрации, веса, натяжения, частоты, момента, освещенности, шума, объема, количества теплоты, тока, уровня и др.). Датчики преобразуют измеряемую физическую величину (температуру, давление и т. п.) в сигнал, удобный для дальнейшей обработки. Если величина этого сигнала не согласуется с входом АЦП (например, если входной величиной АЦП является напряжение в диапазоне $0... \pm 10$ B, а датчик (термопара) имеет выходное напряжение в диапазоне 0 ... 100 мВ и нелинейную зависимость от температуры), то используют измерительный преобразователь, который обеспечивает нормализацию сигнала датчика, например, усиление и линеаризацию [4]. преобразователи должны иметь нормированные Измерительные метрологические характеристики (например, коэффициент усиления преобразователя и его погрешность должны быть известными). Как пример измерительного преобразователя можно привести преобразователь RL-4RVC фирмы RLDA, который используется для преобразования величины сопротивления резистивного датчика температуры в напряжение в диапазоне ± 10 В.

Измерительные преобразователи могут иметь встроенный аналого-цифровой или цифро-аналоговый преобразователь, а также микропроцессор с памятью для линеаризации характеристик датчика и компенсации погрешностей аналоговой части системы. В последнее время получили распространение датчики, объединяющие первичный преобразователь физической величины в электрический сигнал и измерительный преобразователь. Примером

могут быть датчики температуры DS18D20 фирмы Dallas, у которых выходной сигнал является цифровым и может быть введен в компьютер без использования промежуточных преобразователей.

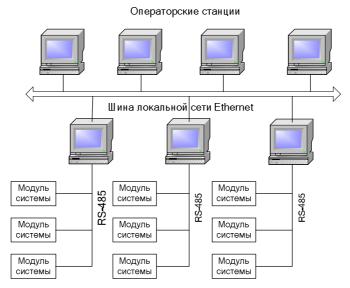


Рис. 2. Сетевая автоматизированная система испытаний

Компьютер является «мозгом» автоматизированной системы. Он принимает сигналы датчиков, исполняет записанную в него программу и выдает необходимые данные в устройство вывода. Коммуникации между компьютером и устройствами ввода-вывода выполнятся обычно через последовательные интерфейсы USB, RS-232, RS-485, RS-422, Ethernet. Иногда устройства АЦП–ЦАП выполняют в виде плат, которые вставляют непосредственно в компьютер, в разъемы шины РСІ. Преимуществом плат является возможность получения ввода-вывода с высокой пропускной способностью (свыше 10 Мбит/с), что трудно достижимо при использовании внешних устройств.

Недостатком является более высокий уровень электромагнитных наводок от компьютера и конструктивные ограничения на количество каналов ввода-вывода.

Внешние устройства обычно подключают к компьютеру через изолирующие преобразователи интерфейсов, которые защищают порты компьютера от высокого напряжения, которое может появиться в случае аварии или при небрежном обращении с оборудованием. Примером изолирующего преобразователя для порта RS-232 может быть оптический изолятор OI-232-1000 с напряжением изоляции 1000 В.

Устройства вывода позволяют выводить аналоговый, дискретный или частотный сигнал. Наиболее распространенными выходными сигналами являются дискретные, которые используются, например, для включения электродвигателей с помощью реле-пускателей, включения нагрева печи, управления клапанами, насосами и другими исполнительными устройствами. Частотный сигнал обычно используется с широтно-импульсной модуляцией, которая позволяет задавать среднюю мощность нагревательных устройств, имеющих большую инерционность.

Обычный офисный компьютер в стандартной конфигурации имеет два порта USB, два COM-порта (COM1 и COM2) и порт Ethernet. Промышленные компьютеры, кроме этого, обычно имеют порты RS-485, RS-422 и оптоволоконный порт.

Все эти порты можно использовать для ввода и вывода сигналов в устройства автоматизированной системы. Для использования оптоволоконного канала передачи к офисному компьютеру можно подключить оптоволоконный преобразователь интерфейса.

К компьютеру могут быть подключены не только специальные модули ввода-вывода, но и многие измерительные приборы широкого применения. Например, вольтметр HP 34401A имеет интерфейс RS-232 и может быть подключен к компьютеру (через расширитель портов) как часть автоматизированной системы измерения.

Сетевая архитектура автоматизированной системы. Устройства ввода-вывода или промышленная сеть могут быть подключены не только к одному компьютеру, но и к локальной сети Ethernet (рис. 2) и глобальной сети Internet. Такая архитектура автоматизированной системы удобна при коллективной работе или когда одна и та же информация используется многими клиентами сети. Например, параметры могут контролироваться одновременно начальником производства, главным инженером, начальником ОТК и ее разработчиками, находящимися в разных зданиях, на разных предприятиях или в разных странах.

Доступ любого компьютера сети к устройствам ввода-вывода осуществляется программно с помощью OPC-сервера [3]. OPC-серверы могут располагаться на нескольких компьютерах сети и доступ к любому OPC-серверу может осуществляться с любого Π К.

Выводы. Предлагаемая система имеет наращиваемую модульную архитектуру. Модули конструктивно выполнены в отдельных корпусах, что позволяет физически располагать их возле соответствующего оборудования (например, модули регулирования температуры — возле камеры тепла и камеры холода, модуль аналогового ввода — возле вибростенда, модуль релейной коммутации — возле испытуемого прибора и т. п.). Наращиваемость обеспечивается применением сети на основе двухпроводного интерфейса RS-485, который осуществляет информационную связь между модулями системы и управляющим компьютером. Набор компонентов системы образует "конструктор", который позволяет собрать любую автоматизированную систему для испытания электронной аппаратуры, в частности для приемо-сдаточных испытаний серийной продукции. Благодаря наличию в составе системы компьютера и удобного программного обеспечения под Windows появляется возможность полной замены ручной работы на автоматизированную. Автоматизированная система имеет следующие преимущества:

- исключаются свойственные человеку ошибки;
- ускоряется процесс испытаний;
- появляется возможность быстрого получения достоверной статистической информации, которую получить измерениями "вручную" невозможно из-за больших затрат времени;
- результаты работы могут быть представлены в наглядной форме в виде графиков и автоматически заполненных бланков отчетов с результатами испытаний на каждое изделие.

Список литературы

- 1. ДСТУ 3400:2006 Метрология. Государственные испытания средств измерительной техники. Введен в действие с 27.12.2006.
- 2. *ДСТУ 2708:2006* Поверка средств измерительной техники. Организация и порядок проведения. Введен в действие с 03.02.2006.
- 3. Frank Iwanitz OPC Fundamentals, Implementation, and Application / Frank Iwanitz, Jrgen Lange -2. Rev. ed. Heidelberg: Huting, 2002 225 p.
- 4. *Сопряжение* датчиков и устройств ввода данных с компьютерами IBM РС: пер. с англ./под ред. У. Томпкинса, Дж. Уэбстера. М.: Мир 1992 592 с.

В. М. Синєглазов, В. Н. Білий

Автоматизовані системи контролю авіаційного електронного обладнання

Запропоновано структуру автоматизованої системи контролю авіаційного електронного обладнання, яка має модульну архітектуру з можливістю нарощування. Наведено нормативні вимоги до вимірювальних каналів.

V. M. Sineglazov, V. N. Beliy

Automated control systems avionics

The structure of CAS of control of aviation electronic equipment is offered in this article, which has the grown module architecture. Normative requirements over are brought to the measuring channels.