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Abstract—In the paper the influence of the initial data to the control law is investigated. Particularly the
control quality under the different wind turbulence was analysed. Two flight control systems had been
synthesized: with a Kalman filter, and with a Luenberger observer. Control laws robust optimization was

performed.
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I. INTRODUCTION

Nowadays in the scientific research makes a special
focus on unmanned air vehicle. One of the problems that
solved is the control systems synthesis. Obtained control
law must provide the necessary control quality. To solve
this problem different approaches are used: a synthesis
using the full and reduced order observer, fuzzy logic, and
so on [2], [4], [5]. It should be borne in mind that the
synthesis is performed for object with incomplete and
inaccurate measurements of the state vector. Received
control law should provide control quality in parametric
disturbance influents.

Thus, accuracy of the object and disturbances
mathematical model has a significant influence on the final
result. Therefore, the investigation of initial data influence
to the control law quality is advisable and actual.

II. DIGITAL CONTROL SYSTEM DESIGN WITH
THE KALMAN OBSERVER

For the synthesis of robust control system with the
Kalman filter it is necessary to define four state-space
matrices of plant. It is also necessary to have
characteristics of sensors noises and stochastic
disturbances, which are acting on the plant [1], [2].

The condition of procedure of Kalman filter synthesis
use is the white noises influencing the plant [1].
Turbulence of the atmosphere — is the colored noise.
Therefore the peculiarity of the plant state space
description is a necessity of forming filter (Dryden filter)
including in its structure, which input is being disturbed by
the white noise, and on an output we have the color noise
which characterizes turbulence of atmosphere [6]. Thus the
inputs of the extended plant in state-space will be disturbed
by the white noise that is corresponds to the terms of the
plant description for the synthesis of Kalman filter. And
the color noise will act directly on our plant.

Such an object in state-space will be described with
equation:

x=Ax+Bu+ow,; y=Cx+Du+o,,

where AeR™ BeR"™ ,CeR™,DeR™, 1 <
n, m < n four aircraft state-space matrices; o, -
external disturbances vector; w, - white noise
of sensors with covariance matrix V, .

Description of stochastic disturbances
(turbulent wind) can be obtained by passing
the white noise through the proper forming
filter. The model of forming filter is
standardized in American practice [6].

Suppose the forming filter is represented in
the state space by fore matrices

[A, erR™",B, eR™,C, eR™",D, eR™].

To adapt considered problem to the
standard form, it is necessary to make use of
separation theorem [69] possible. So the series
connection of Dryden filter and an aircraft
model performed. Result: state space model
with vector x, =[x,,x]' and four state space

matrices
I:A e Rprmx(pen) g o RpHmx(stm)
ex 2 ex b

Ix(p+n) Ix(s+m)
C, eR""™ D, eR"™].

where
A 0 B
|:A B :| / pxn /
= “1=|BC, A |BD,|.
g/ g f
Ca Dex 0 C | D

Ixp
Matrix’s input B, is connected with input

of the forming filter, which disturbs
correspondent variables in state space of
aircraft:

x(i+1) = A, x(@)+B,u(i) +n;
y(@) =C x(@)+D,u(i) +o,.
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where n and ®, are white noises that are disturbing
systems state as well as measurements.
For simplification index ,,ex” will not be used further.
As number of measurements / is less than number of
phase coordinates n, it is necessary to define such an
operator F (optimal filter):

x=F(y,u),

which minimizes error’s norm &(i) = x_ (i) —x(i) .
x can be found by:

X(i+1)= A Xx@{@)+B,u(@)+Kly(@)-C,x(@)], (1)

where K the matrix of gain coefficients of optimal
Kalman observer is determined by the expression

T R r [
K=Qc,[V.o)+c,Qc,]
And matrix of recovery error variance Q
Q=A,/QA,-A,/QB,(B,/QB, +V,)B,QA, +V,.

After we restored the state vector, we can use control
laws (in which it is suggested that the full state vector is
known), replacing true state with the restored one.

Thus the optimal control law is a combination of
optimal stochastic observer, in which the systems state is
restored. And the optimal deterministic controller, that is
immediate linear function of restored state vector. This
result is knows as the separation principle [1].

To solve the problems of optimal deterministic
controller construction it is necessary to minimizes integral
quadratic criteria:

J, =i(xTRlx+uTRzu), (1)
0

where R,, R, are non-negatively defined symmetrical
matrices.

In criteria (1) first component xR x is a measure of
system’s state deviation in moment ¢ from the zero state,
and characterizes performance of the control.

Another member of criteria u'R,u is calculating the
losses of the performance on the control.

Such regulator uses output stationary feedback

u(i) =-Fx(@i), i =iy,i, +1,..,5, =1, (2)

where F is gain coefficients for every variable of state
vector.

Meanings of these coefficients for the expression (2) are
calculated by the formula:

F=(B,'PB, +R,)'B, PA,. 3)

In the expression (3) P is a positively defined
symmetrical matrix. It is a solution of equation:

P=A,PA, - A’PB,(B'PB, +R, B'PB, +R,.

Substituting equation (4), (3) for the
control law in observer equation (1) can be
rewritten in form of:

R, -PBR,B'P+A'P+PA=0.

Substituting expression (3) for the control
law into the observer equation (1), we will
obtain the equation of connection of the
observers with the controller in the form of

x(i+1)=[A, -B,F-KC, |x(i) + Ky(i).

Closed loop system, that is obtained as the
result of connection of the plant with the
controller is the linear one with dimensions of
2n (where n — is dimension of the state x), that
could be described by the system of equations

x(@+D) [ A, -B,F x(7)
x(i+1)) \KC, A,-KC,-B,F)\x(i))
The next step of design is robust

optimization of obtained optimal result [2], [3].

III. DIGITAL CONTROL SYSTEM DESIGN WITH
THE REDUCED ORDER OBSERVER

Consider the linear system with the
corresponding measurements

x = Ax + Bu; y =Cx+Du.

As the number of measurements is less
than the number of phase coordinates, it is
necessary to define the filter to minimize the
error rate e =x—X.

Choose a variable p(z) that is a measure of

variables that are not observed p =C'x, where

C' is the matrix of variables that must be
reconstructed [2], [4]. Then from the relation:

y=Cx
p=C'x

Assume that exists a matrix C, such that

N
rank =n,
o

where C; is matrix of variable, which is
necessary to restore. So

e yo
"“){CJ L)m}

Introduce the notation
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so that
x(1) =L,y (1) + L,p(?).
An observer for p(¢) can be constructed by finding first
a differential equation for p(¢), thatis p(¢) =Cx(¢) =
=C,Ax(t) + C,Bu(t) = C,AL, p(¢) + C,. To see that, we first

observe that

MR R

The measurement are given by
y(t)=Cx(t) =CL,y(¢) + CL,.
If we differentiate the output variable we get
y=Cx=CAx+CBu=CAL,p+CAL,y + CBu,
i. e. y carries information about p(¢). An observer for
p(?) is obtained from the last two equations as
p=C,AL,p +C,AL,y +CBu+K( - §),

where K is the observer gain. If in the differential
equation for y(¢#) we replace p(¢) by its estimate, we will

have

y=CALp+CALy +CBu.
This produces the following observer for p
p=CAL,p + CALy +C,Bu @
+K(y - CAL,p- CAL,y - CBu).

Since it is impractical and undesirable to differentiate
y(¢) in order to get y(¢) (this operation introduces noise in
practice), we take the change of variables

(Al =p-Kyy.
This leads to an observer for q(¢) of the form
() =A,4()+B,u(y)+B,y(0), )

where
A, =CAL,-KCAL,;

B, =CB-K(CB;
B, =CAL,K, +CAL, K CAL, -K,CAL,.

The estimates of the original system state space
variables are now obtained as

X(1) =Ly () +L,p(1) = L,q(1) + (L, + L,K,)y(®).

The equations (4), (5) describe the reduced
order observer.

To convert continuous to discrete observer,
assume

where T is a sampling time of system.
Thus, we will get:

Xn = Adxnfl +Bdun;

Yn :Cdxn +Ddun’
where C,=C, D,=D,
B, =TB, E are unit matrix.

A, =E+TA,

After we restored the state vector, we can
use control laws (in which it is suggested that
the full state vector is known), replacing true
state with the restored one.

Thus the optimal control law is a
combination of reduced order deterministic
observer, in which the systems state is
restored. And the optimal deterministic
controller, that is immediate linear function of
restored state vector. This result is knows as
the separation principle in implicit form [1],
[2], [3]. The procedure of optimal regulator
synthesis is same as with Kalman filter.

IV. ROBUST OPTIMIZATION OF OBTAINED
OPTIMAL RESULT

The robustness requirements to the design
of the flight control system include some
specifications of parameter uncertainty, within
which control system must preserve its
stability and acceptable performance. This
uncertainty could be caused by various
physical reasons, which produce certain
deviation of model’s parameters from their
“nominal” values. In this case we can consider
several models, produced by parametric
disturbances, and the task of the robust control
is to find such single controller, which could
guarantee stability and acceptable
performance for the family of the nominal and
perturbed models. This approach is called
multi-model NPRS approach [2], [3].

For the sake of brevity and without loss of
generality we consider two plant’s models:
nominal and perturbed, which are represented
by two quadruples of matrices [A, B, C, D]
and [A,, B, C,, D,] respectively [2], [3].
Number of perturbed models could be
increased to any appropriate value, if
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information about all them is available. The problem is to
find the same control law for these two models appropriate
from the viewpoint of stability and performance. The
solution of this problem can be achieved by the convex
optimization procedure using composite performance
index (CPI), consisting from estimations of performance
and robustness for the nominal and perturbed systems with
corresponding  LaGrange  factors, weighting the
contribution of each estimation in the CPI [2], [3]:

RS N R S YN
i=1 i=1
o1, TG, + 300 [ G, + PF,
i=1

were A, A, AP A 6, A2 are the corresponding
weight coefficients [4], [5].

The optimization procedure with different coefficients
allows achieving the compromise between robustness and
quality.

The last step in the procedure of the robust control
system synthesis is a modeling system in Simulink package
with all the necessary nonlinear elements belonging to a

TABLE 1

real system (saturation, dead zone, etc.), and
the turbulent wind. Thus, the final conclusion
about the control system quality can be done
after modeling [2], [3].

V. CASE STUDY AND INVESTIGATE OF INITIAL
DATA INFLUENCE

Using the techniques described above
flight control systems synthesis was
performed for object which described in [2].
Some results of the synthesis are presented in
the works [2].

To investigate influence of information on
atmospheric turbulence different forming
filter was calculated. Forming filter was
calculated at root mean square deviations of
the wind speed 6=3 m/s and scales of
turbulence L =580, 6=25 m/s and
L =1000. The results are listed in Table 1 — 4.

The design of the obtained results for
the nominal system in  Simulink
environment is the final stage of synthesis.

NOMINAL AND PERTURBED DISCRETE SYSTEMS CHARACTERISTICS (CONTROL LAW WITH KALMAN FILTER)
WITH THE DIFFERENT ATMOSPHERE CHARACTERISTICS

Atmosphere Standard deviation
characteristics Plane V ,m/s o, degree 0, degree q , degree /s h,m el , degree
8 =2.5m/s n. 0.0254 0.0374 0.0672 0.1172 0.1975 0.0322
L=580 p- 0.0293 0.0333 0.2841 0.0905 0.1734 0.0278
5 =3m/s n. 0.0304 0.0482 0.0853 0.1480 0.2363 0.0415
L =580 p. 0.0350 0.0426 0.3051 0.1143 0.2069 0.0356
8 =2.5m/s n. 0.0248 0.0391 0.0675 0.1240 0.2029 0.0320
L =1000 . 0.0303 0.0358 0.3033 0.1037 0.1835 0.0277

* is on scales of turbulence L =1000 system with a 4 order controller loses stability, order the regulator in this case was
reduced only to 7. The table shows the result for a system with 7 order of the regulator.

TABLE 2

[‘]2 -NORM IN THE STOCHASTIC CASE, PHASE AND AMPLITUDE STABILITY FACTOR FOR THE NOMINAL
AND PERTURBED SYSTEMS (CONTROL LAW WITH KALMAN FILTER) WITH THE DIFFERENT ATMOSPHERIC CHARACTERISTICS

Characteristics Plane 6 =2.5m/s, L =580 6 =3m/s L =580 6 =2.5m/s, L=1000
e nominal* 0.0396 0.0568 0.0418
’ perturbed* 0.0309 0.0440 0.0346
Amplitude stability nominal* 11.5 10.7 12.9
factor (dB) perturbed* 13.6 12.9 15.4
Phase Stablhty factor nominal* 532 5 1 . 1 3 1 . 1
(degree) perturbed* 58.8 57.6 323
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TABLE 3

NOMINAL AND PERTURBED DISCRETE SYSTEMS CHARACTERISTICS (CONTROL LAW WITH LUENBERGER OBSERVER)
WITH THE DIFFERENT ATMOSPHERE CHARACTERISTICS

Atmospl.lelie Plane Standard deviation

characteristics V. m/s o, degree 0, degree q , degree /s h,m el , degree
5 =2.5ms n. 0.1251 | 0.1289 0.2710 0.3963 0.9124 | 0.1168
L =580 P, 02174 | 0.1556 0.4051 0.4049 12380 | 0.1370
5 =3m/s n. 0.1483 | 0.1543 0.3237 0.4748 1.0617 | 0.1399
L =580 . 02622 | 0.1868 0.4860 0.4856 15057 | 0.1645
5 =2.5ms n. 0.1086 | 0.0988 0.2156 0.3030 0.8521 | 0.0896
L =1000 p. 0.1837 | 0.1203 0.3209 0.3101 11132 | 0.1059

TABLE 4

[‘]2 -NORM IN THE STOCHASTIC CASE, PHASE AND AMPLITUDE STABILITY FACTOR FOR THE NOMINAL AND PERTURBED
SYSTEMS (CONTROL LAW WITH KALMAN FILTER) WITH THE DIFFERENT ATMOSPHERIC CHARACTERISTICS

Characteristics Plane 6 =2.5m/s,L =580 6 =3m/s, L =580 6 =2,5m/s, L =1000
nominal 0.8482 1.1493 0.7380
H N

’ perturbed 1.5799 2.3360 1.2557
factor (dB) perturbed 17 17 17
Phase stability factor nominal >3.1 >3.1 >3.1
(degree) perturbed 57.1 57.1 57.1

CONCLUSION [2] Tunik A. and Galaguz T. “Robust

Scales of turbulence changing (experimental
determination of which is more difficult) has greatly
affected on the quality of system with the Kalman
filter. The system with third order control law lost
stability with increasing the scales of turbulence.
Only the seventh order control law provides require
stability. This control law is more complicated. So
its implementation on a simple onboard computer is
not possible in practice.

The change of scale turbulence has a low
influence on the quality if the control law with
Luenberger observer is used.
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