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Abstract—In the paper the influence of the initial data to the control law is investigated. Particularly the 
control quality under the different wind turbulence was analysed. Two flight control systems had been 
synthesized: with a Kalman filter, and with a Luenberger observer. Control laws robust optimization was 
performed. 
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I.  INTRODUCTION 

Nowadays in the scientific research makes a special 
focus on unmanned air vehicle. One of the problems that 
solved is the control systems synthesis. Obtained control 
law must provide the necessary control quality. To solve 
this problem different approaches are used: a synthesis 
using the full and reduced order observer, fuzzy logic, and 
so on [2], [4], [5]. It should be borne in mind that the 
synthesis is performed for object with incomplete and 
inaccurate measurements of the state vector. Received 
control law should provide control quality in parametric 
disturbance influents. 

Thus, accuracy of the object and disturbances 
mathematical model has a significant influence on the final 
result. Therefore, the investigation of initial data influence 
to the control law quality is advisable and actual. 

II.  DIGITAL CONTROL SYSTEM DESIGN WITH 
THE KALMAN OBSERVER 

For the synthesis of robust control system with the 
Kalman filter it is necessary to define four state-space 
matrices of plant. It is also necessary to have 
characteristics of sensors noises and stochastic 
disturbances, which are acting on the plant [1], [2]. 

The condition of procedure of Kalman filter synthesis 
use is the white noises influencing the plant [1]. 
Turbulence of the atmosphere – is the colored noise. 
Therefore the peculiarity of the plant state space 
description is a necessity of forming filter (Dryden filter) 
including in its structure, which input is being disturbed by 
the white noise, and on an output we have the color noise 
which characterizes turbulence of atmosphere [6]. Thus the 
inputs of the extended plant in state-space will be disturbed 
by the white noise that is corresponds to the terms of the 
plant description for the synthesis of Kalman filter. And 
the color noise will act directly on our plant. 

Such an object in state-space will be described with 
equation: 

ω ; ω ,     1 2x Ax Bu y Cx Du  

where mlnlmnnn RRRR   DCBA ,,, , l < 
n, m < n four aircraft state-space matrices; ω1  - 
external disturbances vector; ω2  - white noise 
of sensors with covariance matrix 2V . 

Description of stochastic disturbances 
(turbulent wind) can be obtained by passing 
the white noise through the proper forming 
filter. The model of forming filter is 
standardized in American practice [6]. 

Suppose the forming filter is represented in 
the state space by fore matrices  
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To adapt considered problem to the 
standard form, it is necessary to make use of 
separation theorem [69] possible. So the series 
connection of Dryden filter and an aircraft 
model performed. Result: state space model 
with vector ]'[ x,xx fex   and four state space 
matrices 
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Matrix’s input gB  is connected with input 
of the forming filter, which disturbs 
correspondent variables in state space of 
aircraft: 
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where η  and 2ω  are white noises that are disturbing 
systems state as well as measurements. 

For simplification index „ex” will not be used further. 
As number of measurements l  is less than number of 

phase coordinates n , it is necessary to define such an 
operator F  (optimal filter): 

),( uyx F , 

which minimizes error’s norm )()()( iii ex xx  . 
x̂  can be found by: 

( 1) ( ) ( ) ( ) ( ) ,d d di i i i i    x A x B u K[y C x ]             (1) 

where K  the matrix of gain coefficients of optimal 
Kalman observer is determined by the expression 

  1

2 )(


 T
dd

T
d i QCCVQCK  

And matrix of recovery error variance Q  

  1.T T T T
d d d d d d d d   2Q A QA A QB B QB V B QA V  

After we restored the state vector, we can use control 
laws (in which it is suggested that the full state vector is 
known), replacing true state with the restored one. 

Thus the optimal control law is a combination of 
optimal stochastic observer, in which the systems state is 
restored. And the optimal deterministic controller, that is 
immediate linear function of restored state vector. This 
result is knows as the separation principle [1]. 

To solve the problems of optimal deterministic 
controller construction it is necessary to minimizes integral 
quadratic criteria: 





0

21 )( uRuxRx TT
dJ ,  (1) 

where 1R , 2R  are non-negatively defined symmetrical 
matrices. 

In criteria (1) first component xRx 1
T  is a measure of 

system’s state deviation in moment t  from the zero state, 
and characterizes performance of the control.  

Another member of criteria uRu 2
T  is calculating the 

losses of the performance on the control. 
Such regulator uses output stationary feedback 

( )(i) i u Fx , 0 0 1, 1,..., 1i i i i   ,  (2) 

where F is gain coefficients for every variable of state 
vector. 

Meanings of these coefficients for the expression (2) are 
calculated by the formula: 
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In the expression (3) P  is a positively defined 
symmetrical matrix. It is a solution of equation: 
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Substituting equation (4), (3) for the 
control law in observer equation (1) can be 
rewritten in form of: 

01
21   PAPAPBPBRR TT . 

Substituting expression (3) for the control 
law into the observer equation (1), we will 
obtain the equation of connection of the 
observers with the controller in the form of 

 ( 1) ( ) ( ).d d di i i    x A B F KC x Ky   

Closed loop system, that is obtained as the 
result of connection of the plant with the 
controller is the linear one with dimensions of 
2n (where n – is dimension of the state x), that 
could be described by the system of equations 
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The next step of design is robust 
optimization of obtained optimal result [2], [3]. 

III. DIGITAL CONTROL SYSTEM DESIGN WITH 
THE REDUCED ORDER OBSERVER 

Consider the linear system with the 
corresponding measurements 

; .x = Ax + Bu y = Cx + Du  

As the number of measurements is less 
than the number of phase coordinates, it is 
necessary to define the filter to minimize the 
error rate xx  .  

Choose a variable )(tp  that is a measure of 
variables that are not observed xCp  , where 
C  is the matrix of variables that must be 
reconstructed [2], [4]. Then from the relation: 
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Assume that exists a matrix 1C  such that 
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where C1 is matrix of  variable, which is 
necessary to restore. So 
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Introduce the notation 
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so that 
1 2( ) ( ) ( ).t t t x L y L p  

An observer for ( )tp  can be constructed by finding first 
a differential equation for ( )tp , that is 1( ) ( )t x t p C   

1 1 1 2 1( ) ( ) ( ) .x t u t p t   C A C B C AL C To see that, we first 

observe that  
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The measurement are given by 

1 2( ) ( ) ( ) .t t t  y Cx CL y CL  

If we differentiate the output variable we get 

2 1 ,    y Cx CAx + CBu CAL p CAL y CBu   

i. e. y  carries information about ( )tp . An observer for 
( )tp  is obtained from the last two equations as 

1 2 1 1 1ˆ ˆ ˆ ,   p C AL p C AL y C Bu K(y - y)   

where K  is the observer gain. If in the differential 
equation for ( )ty  we replace ( )tp  by its estimate, we will 
have 

1 1ˆˆ .  y CAL p CAL y CBu  

This produces the following observer for p  
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Since it is impractical and undesirable to differentiate 
( )ty  in order to get ( )ty  (this operation introduces noise in 

practice), we take the change of variables 

1ˆ .q p - K y  

This leads to an observer for ˆ ( )tq  of the form 

ˆ ˆ( ) ( ) ( ) ( )q qu qyt t y t  q A q B u B y ,  (5) 

where 

1 2 1 2;q  A C AL K CAL  

1 1 ;qu  B C B K CB  

1 2 1 1 1 1 1 1 2.qy    B C AL K C AL K CAL K CAL  

The estimates of the original system state space 
variables are now obtained as 

1 2 2 1 2 1ˆ ˆˆ ( ) ( ) ( ) ( ) ( ) ( ).t t t t t    x L y L p L q L L K y  

The equations (4), (5) describe the reduced 
order observer. 

To convert continuous to discrete observer, 
assume 

1 ,n n
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where T  is a sampling time of system. 
Thus, we will get: 

1 ;
,

n d n d n

n d n d n

 

 

x A x B u
y C x D u

 

where d C C , d D D , d A E + TA , 

dB = TB , E  are unit matrix. 
After we restored the state vector, we can 

use control laws (in which it is suggested that 
the full state vector is known), replacing true 
state with the restored one. 

Thus the optimal control law is a 
combination of reduced order deterministic 
observer, in which the systems state is 
restored. And the optimal deterministic 
controller, that is immediate linear function of 
restored state vector. This result is knows as 
the separation principle in implicit form [1], 
[2], [3]. The procedure of optimal regulator 
synthesis is same as with Kalman filter. 

IV. ROBUST OPTIMIZATION OF OBTAINED 
OPTIMAL RESULT 

The robustness requirements to the design 
of the flight control system include some 
specifications of parameter uncertainty, within 
which control system must preserve its 
stability and acceptable performance. This 
uncertainty could be caused by various 
physical reasons, which produce certain 
deviation of model’s parameters from their 
“nominal” values. In this case we can consider 
several models, produced by parametric 
disturbances, and the task of the robust control 
is to find such single controller, which could 
guarantee stability and acceptable 
performance for the family of the nominal and 
perturbed models. This approach is called 
multi-model NPRS approach [2], [3]. 

For the sake of brevity and without loss of 
generality we consider two plant’s models: 
nominal and perturbed, which are represented 
by two quadruples of matrices [A, B, C, D] 
and [Ap, Bp, Cp, Dp] respectively [2], [3]. 
Number of perturbed models could be 
increased to any appropriate value, if 
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information about all them is available. The problem is to 
find the same control law for these two models appropriate 
from the viewpoint of stability and performance. The 
solution of this problem can be achieved by the convex 
optimization procedure using composite performance 
index (CPI), consisting from estimations of performance 
and robustness for the nominal and perturbed systems with 
corresponding LaGrange factors, weighting the 
contribution of each estimation in the CPI [2], [3]: 
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were ,d s  , ( ) ( ),p p
di si  , ( ), p

i    are the corresponding 
weight coefficients [4], [5]. 

The optimization procedure with different coefficients 
allows achieving the compromise between robustness and 
quality. 

The last step in the procedure of the robust control 
system synthesis is a modeling system in Simulink package 
with all the necessary nonlinear elements belonging to a 

real system (saturation, dead zone, etc.), and 
the turbulent wind. Thus, the final conclusion 
about the control system quality can be done 
after modeling [2], [3]. 

V. CASE STUDY AND INVESTIGATE OF INITIAL 
DATA INFLUENCE 

Using the techniques described above 
flight control systems synthesis was 
performed for object which described in [2]. 
Some results of the synthesis are presented in 
the works [2]. 

To investigate influence of information on 
atmospheric turbulence different forming 
filter was calculated. Forming filter was 
calculated at root mean square deviations of 
the wind speed 3   m/s and scales of 
turbulence 580L , 2.5   m/s and 

1000L . The results are listed in Table 1 – 4. 
The design of the obtained results for 

the nominal system in Simulink 
environment is the final stage of synthesis. 

 
TABLE 1 

NOMINAL AND PERTURBED DISCRETE SYSTEMS CHARACTERISTICS (CONTROL LAW WITH KALMAN FILTER) 
WITH THE DIFFERENT ATMOSPHERE CHARACTERISTICS 

Atmosphere 
characteristics Plane 

Standard deviation 

V , m/s  , degree  , degree q , degree /s h , m el , degree 
 =2.5m/s 
L =580 

n. 0.0254 0.0374 0.0672 0.1172 0.1975 0.0322 

p. 0.0293 0.0333 0.2841 0.0905 0.1734 0.0278 
 =3m/s 
L =580 

n. 0.0304 0.0482 0.0853 0.1480 0.2363 0.0415 
p. 0.0350 0.0426 0.3051 0.1143 0.2069 0.0356 

 =2.5m/s 
L =1000 

n.* 0.0248 0.0391 0.0675 0.1240 0.2029 0.0320 
p.* 0.0303 0.0358 0.3033 0.1037 0.1835 0.0277 

* is on scales of turbulence L =1000 system with a 4 order controller loses stability, order the regulator in this case was 
reduced only to 7. The table shows the result for a system with 7 order of the regulator. 

TABLE 2 

2H -NORM IN THE STOCHASTIC CASE, PHASE AND AMPLITUDE STABILITY FACTOR FOR THE NOMINAL 
AND PERTURBED SYSTEMS (CONTROL LAW WITH KALMAN FILTER) WITH THE DIFFERENT ATMOSPHERIC CHARACTERISTICS 

Characteristics Plane  =2.5m/s, L =580  =3m/s L =580  =2.5m/s, L =1000 

2
sH  nominal* 0.0396 0.0568 0.0418 

perturbed* 0.0309 0.0440 0.0346 

Amplitude stability 
factor (dB) 

nominal* 11.5 10.7 12.9 
perturbed* 13.6 12.9 15.4 

Phase stability factor 
(degree) 

nominal* 53.2 51.1 31.1 
perturbed* 58.8 57.6 32.3 
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TABLE 3 

NOMINAL AND PERTURBED DISCRETE SYSTEMS CHARACTERISTICS (CONTROL LAW WITH LUENBERGER OBSERVER) 
WITH THE DIFFERENT ATMOSPHERE CHARACTERISTICS 

Atmosphere 
characteristics Plane 

Standard deviation 

V , m/s  , degree  , degree q , degree /s h , m el , degree 

  = 2.5m/s 
L  = 580 

n. 0.1251 0.1289 0.2710 0.3963 0.9124 0.1168 

p. 0.2174 0.1556 0.4051 0.4049 1.2380 0.1370 

  = 3m/s 
L  = 580 

n. 0.1483 0.1543 0.3237 0.4748 1.0617 0.1399 

p. 0.2622 0.1868 0.4860 0.4856 1.5057 0.1645 

  = 2.5m/s 
L  = 1000 

n. 0.1086 0.0988 0.2156 0.3030 0.8521 0.0896 

p. 0.1837 0.1203 0.3209 0.3101 1.1132 0.1059 

TABLE 4 

2H -NORM IN THE STOCHASTIC CASE, PHASE AND AMPLITUDE STABILITY FACTOR FOR THE NOMINAL AND PERTURBED 

SYSTEMS (CONTROL LAW WITH KALMAN FILTER) WITH THE DIFFERENT ATMOSPHERIC CHARACTERISTICS 

Characteristics Plane   = 2.5m/s, L  = 580  = 3m/s, L = 580  = 2,5m/s, L = 1000 

2
sH  

nominal 0.8482 1.1493 0.7380 

perturbed 1.5799 2.3360 1.2557 

Amplitude stability 
factor (dB) 

nominal 13.2 13.2 13.2 

perturbed 17 17 17 

Phase stability factor 
(degree) 

nominal 53.1 53.1 53.1 

perturbed 57.1 57.1 57.1 

 

CONCLUSION 

Scales of turbulence changing (experimental 
determination of which is more difficult) has greatly 
affected on the quality of system with the Kalman 
filter. The system with third order control law lost 
stability with increasing the scales of turbulence. 
Only the seventh order control law provides require 
stability. This control law is more complicated. So 
its implementation on a simple onboard computer is 
not possible in practice. 

The change of scale turbulence has a low 
influence on the quality if the control law with 
Luenberger observer is used. 
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