On structures of combined uav flight control systems with elements of fuzzy logics

A. A. Tunik, M. M. Komnatska

Abstract


The paper deals with flight control system development in a form of successive loop control that involves “crisp” and fuzzy contours. The paper explores peculiarities of sharing the control functions between “crisp” and fuzzy parts of the developed autopilot. The division of the autopilot structure into “crisp” and fuzzy parts is performed by applying the H -robust stability theory of fuzzy systems and the describing function approach. The design procedure is illustrated by a case study of unmanned aerial vehicle lateral channel control. It was proved that application of the fuzzy control is expedient for outermost contour in the successive loop structure of flight control system

Keywords


Successive loop control; flight control system; sensitivity function; fuzzy control; describing function; robustness

References


Austin, R. Unmanned Aircraft Systems: UAVS Design, Development and Deployment, John Wiley & Sons Ltd, Chichester, UK, 332 p., 2010.

Beard, R.W.; McLain, T.W. Small Unmanned Aircraft. Theory and Practice, Princeton University Press, Princeton, NJ, 300 p., 2012.

Jamshidi, M.; Gomez, J.; Jaimes A.S. “Intelligent Control of UAVs for Consensus – Based and Network Controlled Applications”, Appl. Comput. Math., vol. 10, no. 1, special issue, pp. 35–64, 2011.

Tunik, A. A.; Touat, M. A. “Hard and Soft Computing in the Robust Flight Control Systems”, Appl. Comput. Math., vol. 5, no. 2, pp.166–180, 2006.

Dong Xu Guo; Tunik, A. A. “Robust Control of UAV Lateral Motion via Fuzzy Autopilot,” Electronics and Control Systems, no. 4(10), pp. 127–135, 2006. (in Russian).

Schram, G.; Verbruggen, H. B. A “Fuzzy Control,” Robust Flight Control. Design Challenge, Springer-Verlag. Berlin, Heidelberg, New York, pp. 397–419, 1997.

Leephakpreeda, T. “  H -stability Robustness of Fuzzy Control Systems,” Automatica, vol. 35, pp.1467–1470, 1997.

McLean, D. Automatic Flight Control Systems, Prentice Hall, NY, 593 p., 1990.

Curry, J. A.; Maslanik, J.; Holland, G.; Pinto, J. “Application of Aerosonde in the Arctic,” American Meteorological Society, pp. 1855–1861, 2004.

Vukich, Z.; Kuljaca, L.; Donlagich, D.; Tesnyak, S. Nonlinear Control Systems. Marcel Dekker, Inc., NY, Basel, 385 p., 2003.

Passino, K. M.; Yurkovich S. Fuzzy Control, Addison –Wesley Longman, Inc., 502 p., 1998.

Kwakernaak, H. “Robust Control and H Optimization – Tutorial Paper,” Automatika, vol. 29, no. 2, pp. 255–273, 1993.

Yusupov, R. M. Models of Sensitivity, Handbook on Automatic Control Theory, ed. A. A. Krasovsky, Nauka, Moscow. pp. 604–636, 1987. (in Russian).

Boyd, S. P.; Barratt, C. H. Linear Controller Design, Prentice Hall, NY, 416 p., 1991.

E. R. Kandel. Principles of neural science, Fifth Editition, Kandel, E.R.; Schwartz, J.H.; Jessell T.M. and two more, McGraw Hill Medical, 2012, pp. 338–343.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.