Optimal choice of the technical means of rate, pitch and roll channels subsystems of navigation equipment simulation table

V. M. Sineglazov, S. O. Dolgorukov

Abstract


Design of complex large-scale systems has been surveyed. In this article it is proposed multilevel multiobjective optimization methodology that can be implemented in the computer-aided design software for technical means optimal choice

Keywords


Multiobjective optimization; hierarchical multilevel systems; simulation table; genetic algorithm

References


Mesarovich, M.; Mako, D.; Takhakara, Ya. Theory of multilevel hierarchical systems. Moscow: Mir, 1973, 332 p. (in Russian).

Mesarovich, M.; Takhakara, Ya. General theory of systems: Mathematical fundamentals. Moscow: Mir, 1978, 312 p. (in Russian).

Cohon, J. L. 1983. Multi-objective programming and planning. New York: Academic Press.

Miettinen, K. 1999. Nonlinear multi-objective optimization. Boston: Kluwer Academic Publishers.

Haimes, Y. Y.; Lasdon, S.; & Wismer, D. A. 1971. “On a bicriteriion formulation of the problem of integrated system identification and system optimization.” IEEE Transactions on Systems, Man, and Cybernetics, 1(3), pp. 296–297.

Steuer, R. E. 1986. Multiple criteria optimization: Theory, computation, and applications. John Wiley & Sons, Inc.

Fishburn, P. C. 1974. “Lexicographic orders, utilities, and decision rules: A survey.” Management Science, 20(11), pp. 1442–1471.

Ignizio, J. P. 1974. “Generalized goa programming: An overview.” Computer and Operations Research, 10(4), pp. 277–289.

Lam, Th. B. and Alam, S. Multi-Objective Optimization in Computational Intelligence: Theory and Practice. IGI Global, 2008.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. New York: John Wiley and Son Ltd.

Deb, K.; Pratap, A.; Agarwal, S.; & Meyarivan, T. 2002. “A fast and elitist multi-objective genetic algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation, 6(2), pp. 182–197.

Zitzler, E.; Laumanns, M.; & Thiele, L. 2001. SPEA2: Improving the strength Pareto evolutionary algorithm for multi-objective optimization. In K. C. Giannakoglou, D. T. Tsahalis, J. Periaux, K. D. Papailiou, & T. Fogarty (Eds.), Evolutionary methods for design optimization and control with applications to industrial problems (pp. 95–100). International Center for Numerical Methods in Engineering (Cmine).

Coello, C. A. C.; Pulido, G. T.; & Lechuga, M. S. 2004. “Handling multiple objectives with particle swarm optimization.” IEEE Transactions one Evolutionary Computation, 8(3), pp. 256–279.

Gunawan, S.; Farhang-Mehr, A. and Shapour Azarm. 2003. “Multi-level Multi-objective Genetic Algorithm Using Entropy to Preserve Diversity.” EMO, vol. 2632 of Lecture Notes in Computer Science, pp. 148–161. Springer.

Mehr, A.; Azarm, S. “Diversity Assessment of Pareto Optimal Solutions: An Entropy Approach”, Proceedings of the IEEE World Congress on Evolutionary Computation, Honolulu, Hawaii, 2002.

Fonseca, C. M. and Fleming, P. J. 1993. “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization.” Proceedings of the 5th International Conference on Genetic Algorithms, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. pp. 416–423.

Golinski, J. 1970. “Optimal Synthesis Problems Solved by Means of Nonlinear Programming and Random Methods”, Journal of Mechanisms, vol. 5, pp. 287–309.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.