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Abstract—Algorithm for determination of transfer function models for transient processes from noisy data
with continued fraction approximations is proposed. Presented method allows to solve the stability prob-

lem of low-order continued fraction approximations.

Index Terms—System identification;
Rutishauser’s method; Shure’s criterion.

I. INTRODUCTION

There has been always interest to continued frac-
tions as to mathematical apparatus for approxima-
tions as it has many remarkable advantages. Among
these advantages are following two 1) nth order con-
tinued fraction expansions are the best rational ap-
proximants, 2) this mathematical apparatus has quite
good calculation stability, 3) calculation of coeffi-
cients of continued fractions can be effectively rea-
lized in microcontrollers [1], [2].

Using continued fractions for system identifica-
tion was proposed in [3]. As it was shown in conse-
quent papers, this prospective approach can be im-
plemented for various identification problems, in-
cluding parametrical and structural parametrical
identification from transient and impulse responses
for open loop systems and for closed loop ones
[31-{6].

Main problems in practical application of con-
tinued fractions for system identification are prob-
lems of stability and convergence [6]. These prob-
lems arise when experimental data is affected with
noise of significantly high level as well as when order
of continued fraction approximation is too low.

As models of low order are in particular situations
more preferable than high-order ones and there are
many situations when noise-level is very high, the
problem of low-order approximation in system iden-
tification is actual problem of practical interest.

In this paper we propose algorithm for
identification of time-delay systems from noisy
transient responses using mathematical apparatus of
continued fractions and special stabilization
procedure.

II. MAIN RESULT

Identification process, according to the proposed
approach, can be divided on 5 consequent stages:

low-order approximation; time-delay;

continued fraction;

1. Data acquisition.

2. Stabilization of experimental sequence.

3. Identification of discrete-time transfer function
using continued fraction expansion.

4. Retrieving of continuous-time transfer function
(if needed).

5. Adjustment of model’s parameters.

When information on the technological process’s
parameters systems is introduced in a digital form (as
output of analog-to-digital convertor), experimental
data can be easily represented in a form of formal
Laurent series:
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Continued  fractions can be used for
approximation of analytic functions. Continued
fraction approximations take on values in the
extended complex plane and may converge in regions
that contain isolated singularities of the function to be
represented.

Selection of an order of approximation is the
problem to solve at first stage of identification.

Elements of the series (1) are related by recurrent
equations determined by the system structure:
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where X(z) is Z-image of input signal; ¥(z) is Z-image
of output signal; y(nT) is sequence of output values;
x(nT) is sequence of input values.

The variety of practical methods of representing
power series in a continued fraction form as well as
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General theory of continued fractions conformity
with formal Loran series are described in [7], [8].

The Rutishauser’s method was chosen to be the
method of representing analytic functions by
continued fractions. This choice is conditioned by
several advantages of using Rutishauser method as it
was proved in [5].

Rutishauser’s method is determined by the
formula [7]:
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where ¢ eC, ¢ eC, f(z)eC, C=Cu[w];

{e) and {¢'"} are sequences determined with
relations:
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To determine the most proper order of approxi-
mation (which determines structure of the model)
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following methodic proposed: definition of the
structure is made by dropping a number of indexes
that correspond to values close to zero in the residual
fraction numerator.

As it is implied that in (2) ¢ #0 and
g #0(form=1,2,3...), the sequence {c,} should

be shifted to the first nonzero element and the
resulting continued fraction should be multiplied by
2z~ according to the delay theorem, where d is a shift
of the lattice function.

Continued fraction coefficients can be expressed

in terms of experimental sequence’s elements {c}:
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Corresponding continued fractions and characte-
ristic polynomials:
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Discrete-time system is stable when all its poles
are inside the unit disc. Such a way, when we have
unstable continued fraction approximation our task is
to correct its poles to “move” all of them into the unit
disc (Fig. 1).

We propose correct not poles but the
experimental sequence {c} used for continued
fraction expansion, that allows to achieve best fitness
of approximation curve to experimental data as well
as accelerate iterative computational procedure.
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To fully automatize stability-correction, we
propose to execute stability analysis with Shure’s
criterion (or other algebraic criterion) [9]: for
characteristic polynomial of the discrete-time transfer
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should have number of sign changes equal to the
order of characteristic polynomial, that’s: A, <0,

A,>0, A, <0, A, >0 ... (-D"A,>0.
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Fig. 1. Z-plane pole adjustment

For instance, for 3rd order continued fraction
(which has 2nd order characteristic polynomial) we’ll
have:
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And A’s can be expressed in terms of {c}:
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Such a way, stability conditions can be
formulated as a system of n nonlinear inequations:

A ({ey,) <0;
A, ({e5,) > 0;
A;({e},) <0; )

(=1"A, ({c},) > 0.

Let’s introduce corrected sequence { ¢, } that
makes (3) held:

¢ =c +d,

where d, are correcting differences (that assumed to
be admissible small) that are defined based on
absolute value of differences between current, next
and previous values in experimental sequence.
Therefore, we can determine stable approximation

with solution of optimization problem, where
minimizing functional can be formulated as

J = Z(EI —¢,)’ = min.
i=0
Then, using {c} for continued fraction expansion

we’ll retrieve stable approximation of order 7.
Let’s illustrate this method with example.
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Assume that we selected 3rd order continued
fraction and we got following experimental output
sequence (7 = 1s): 0; 0; 0; 0.1420; 0.3801; 0.5805;
0.7410; 0.8399; 0.9; ...

This experimental data gives us unstable transfer
function as A, =0.00010454 > 0.

Simple iterative search in 60000 iterations in
quite short value range gave us 3175 “stable”
sequences and 56825 “unstable” sequences.

Examples of “stable” sequences are following:

1) 0.1420; 0.3785; 0.5855; 0.7380; 0.8419 ...

2) 0.1420; 0.2801; 0.4805; 0.6730; 0.8559 ...

3) 0.1420; 0.3121; 0.4965; 0.6410; 0.7399 ...

4) 0.1420; 0.2785; 0.6835; 0.8360; 0.7419 ...

As first in this list sequence is the closest one to
experimental data so that it should be used for
continuous fraction expansion and it’ll give us
discrete-time transfer function:

5 0.142z+0.09023

F(z)= .
(=2 037402567

“4)

Determination of model in a from of continuous
transfer function, if needed, can be realized with
inverse Z-transform. Minimal order continuous
transfer function can be retrieved with using
zero-order hold assumption or matched mapping
between z-plane and s-plane.

During matched inverse Z-transform
transformation should be carried out within the
general frequency band, limited by Nyquist
frequency according to the Nyquist-Shannon-
Kotelnikov sampling theorem. On the basis of
matched Z-transform properties negative roots of
z-plane are looped off during the mapping to the
s-plane [10].

Gain coefficient can be determined with formula

where y  is steady-state value of the discrete transfer

function (y,, = lirrllG(z) ); s, are poles of continuous
z—

transfer function; s_ is initial zero approximations.

If we apply Z-inverse transform for (4) we’ll
receive following model in a form of continuous-time
transfer function:

0.44e™>
F(s)=— .
s°+1.365+0.43

Experimental data and determined continuous
-time transfer functions are shown in Fig. 2.
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Fig. 2. Results of identification

As we can see in Fig. 2 model approximates
experimental process with high accuracy.

In general case the time-delay of continuous
object can be represented as: t=vT — At, where v is
time-delay samples; At is time-delay sampling
error, 0<At<T . When At#0 the shift of lattice
function is present that causes the zeroes distortion of
retrieving continuous transfer function. More
accurate (appropriate) value of continuous time-delay
can be determined with simple iterative procedure.

III. SUMMARY

New algorithm for identification of systems from
real transient responses was proposed. The method of
identification allows to solve the stability problem of
low-order continued fraction approximations in au-
tomatic mode (user should specify order of approx-
imation only).

Efficiency of proposed method was demonstrated
with short illustrative example.

Proposed method involves iterative procedure
utilizing numerical methods, and as result of this it is
difficult to apply this method for real-time identifi-
cation.

As for future research this method should be op-
timized to provide higher speed of stable solution
search.
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