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The design of flight robust control law is always a challenge to the engineer. This difficulty is 
more actual in the area of the unmanned aerial vehicles (UAVs), which are vulnerable to the 
internal and external disturbances. This paper is devoted to the design of flight robust control 
law for the lateral channel of UAV based on HH 2 -robust optimization. The task is divided 
into two stages, in the first stage a linear quadratic Gaussian (LQG) is synthesized based on the 
separation theorem. The second stage is consecrated to the robust optimization of the 
aforementioned regulator. It is known that the genetic algorithm optimization is more robust 
than traditional optimization procedures, also it has the propriety to converge to the global 
minimum and well suited to seek a compromise between multi-objectives function. The 
simulation results prove the efficiency of the proposed procedure.  

Introduction. During the recent years, the unmanned aerial vehicles (UAVs) have proved to 
hold a significant role in the world of the aviation. Since, it accomplishes a variety of tasks, starting 
from military investigation to civilian and scientific researches. Consequently, this area brought a 
great interest to the scientific community, in order to develop the field and make it more flexible 
and accurate. 

The most expanded area is the flight dynamic control, which makes the UAVs full 
autonomous or semi-autonomous. The design of such systems is a challenge and requires 
engineering skills. As it is known, the UAVs during the flight are subjects to the disturbances, 
which could be external produced from the change in atmospheric conditions and internal ones 
caused from the change of the parameters of the UAVs during the flight. Therefore, the control law 
designed for the nominal flight parameters may not perform in the same way when disturbances 
occur. Hence, to overcome these difficulties and ensure the handling qualities the control law 
should be robust.  

The flight robust control, is widely developed due to its characteristics [1 – 4] allowing the 
rejection of exogenous and endogenous perturbation. The technique used in this paper is based on 

HH 2 -robust optimization. This technique is divided into two stages; in the first a linear 
quadratic Gaussian is designed based in the separation theorem, the second level of this method is 
to “robustify” the control law, this is given by the aforementioned optimization method. The cost 
function used in this optimization, is computed using 2H -norm of the sensitivity function to 
estimate the performances of the closed loop system and H -norm of the complementatrity 
sensitivity function to quantify the degree of robustness. The mixed HH 2 -optimization is used 
to find a trade-off between the multi-objectives of the performance and the robustness to satisfy the 
handling qualities of the aircraft flight. 

To prove the effectiveness of this method, the lateral channel Aerosonde UAV in coordinate 
turn is used as a case study. It is necessary to notice, that robust optimization of the longitudinal 
motion of UAV was considered in [5]. In this paper the approach developed in [6] is expanded at 
the control of lateral motion. 

The first stage: LQG regulator synthesis. Let the following state space model describe the 
lateral channel of the UAV,  
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where i  is the number of mathematical models used for description of the UAV dynamics 
( 1, 2,3i  ). To prove the effectiveness of the method used in this paper, three models are generated 
form the linearization of the Aerosonde nonlinear model [5]. These models correspond to 3  values 
of the true airspeed V , due to the dependency of the UAV dynamics on this variable. The first 
model matrices (2) constitute the nominal plant and correspond to 30m secV  , the matrices (3) 
and (4) correspond to the parametrically disturbed plants with 2 25m secV  , 2 35m secV  , 
respectively. 
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The state vector is  [ ]X p r    , where  is the lateral velocity component, r  is the 
yaw rate, p  is the roll rate,   is the bank angle and  is the heading angle. The control inputs 

 a rU     are ailerons and rudder, respectively. The vector w  in (1) stands for the processes 
disturbances,   represents the measurements noises. The matrix iG  is defined by the model of the 
atmospheric conditions and the mathematical model of the UAV [2; 6]. The model of the 
atmospheric conditions used here is a Dryden filter defined by the following quadruple of 
matrices  drdrdrdr D,C,B,A , the numerical values of this model can be computed as follows [7]: 
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where 4p b V   ,   1 6 1 30.8 4p w wk V b L   , v vL V  , 3v V  , v v vk L V   , 

1rk V  and r vL V  . 

vL  and wL represent the turbulence scale lengths; v , w  are the r.m.s values of turbulent 
wind lateral and vertical velocities.   
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The computation of these values depend on the altitude at which the aircraft is flying, in our 
case the models represented in (2), (3) and (4) are obtained for the altitude 200 mh  . The inputs to 
the filter (5) are white Gaussian noises corresponding to the lateral wind gust component and 
vertical one; the outputs are the lateral turbulent speed component gv , the turbulent yaw rate gr  and 
turbulent roll rate gp . 

So far we have three values of V  ( 25,30,35 m / sec ), three filters would be taken in account. 
The models of the actuators are approximated by the first order model given by the transfer 
function: 

1
1act

act
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. 

In this work we suppose that we have three sensors to measure , ,r p  , which are affected 
by noises,  the remaining states are estimated by Kalman filter. 

After connecting Dryden filter and the actuators to the model of the UAV, the extended model 
is formed and is given by the following matrices: 
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It can be seen, that the extended model given in (6) has 11 states and it known that, in the area of 
unmanned vehicle the designer should minimize the number of airborne sensors used to measure the 
controlled states, but some variables should be known to ensure a good control. Therefore, Kalman 
filter is used to restore the full states vector using three measurements corresponding to yaw rate r , 
roll rate p  and heading angle  . After the filtering estimation of the full state vector, the linear 
quadratic regulator (LQR) is used to control the aircraft, this theory is known as separation theorem 
[9 – 11]. 

The optimal Kalman filter is defined as: 
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L is the Kalman gain matrix given by the following expression: 
1

N
T
ex RPCL         (7) 

where P  is the unique positive-definite solution to the following Algebraic Riccati Equation 
(ARE): 
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NQ  and NR  are the covariance matrices associated with the measurement and process noises, 
respectively. The state feedback K  is given in the following expression:    

SBRK T
ex

1                   (8) 
where S  is the unique positive definite matrix of (ARE) associated with the optimal feedback 
problem: 
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and the optimal control law minimizing the performance index, is as follows: 

exX~KU  . 
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The state space model of the closed loop system shown in fig.1 is given by the following 
equations: 
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Stage two: robust optimization. As stated before, the most wanted and valuable property in 
flight control system is the robustness without loosing performances. Many methods were proposed 
in the literature to recover the robustness of the closed loop system [4]. In this section, we will 
discuss this property and propose a solution to this crucial problem in flight dynamic. The method 
used is based on HH 2 -robust optimization [7; 12]. During flight various uncertainties occur due 
to the parameters change. These uncertainties could be external and/or internal, structural and/or 
unstructured, which produce certain deviation from the nominal behavior to perturbed one. The idea 
is to find a compromise between the robustness and the performances for any perturbed model of 
the closed loop system with a single controller designed for the nominal plant. The design 
algorithm, is to estimate the performance and robustness of the closed loop system using 2H -norm 
of the sensitivity function and H -norm of the complementary sensitivity function, then try to find 
the compromise between this two properties. For this reason, the solution to this problem to this 
problem is to insert several objectives in one cost function and try to satisfy them at the same time, 
it is known as multi-objectives optimization problem [13 – 15].  

The optimization variables are the Kalman gain matrix L and the regulator gain matrix K , 
their initial values are computed in equations (7) and (8), respectively. The optimization procedure 
adopted in this paper is based on genetic algorithm, this technique is known as a suited method for 
multi-objectives optimization problems [14]. The block diagram shown in fig. 1, gives an overview 
of the scheme used in this study: 
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Fig. 1. Closed loop system ( p  is a vector of adjustable parameters of controller) 

The performances and robustness are estimated for the three models, defined in the last 
section, by computing the HH 2 -norms for the closed loop system depicted in fig. 1, for different 
scenario (In stochastic case and deterministic case). The composite performance index is given in 
the following [2; 3; 6]:  
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where dn

2UZH   defines the 2H -norm of the nominal model in deterministic case,   
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
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H – norm and gives the estimation of the robustness of the nominal controlled plant, 
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computes the summation of the H -norm for two parametrically disturbed plants.   sn

2UZH  defines 
the performances of the nominal stochastic model, the same summation of the 2H  – norm being 
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defined for the two perturbed models with the expression 


2

1k

spk

2UZH .  The computation of these 

quantities is given in [2; 3; 6; 13]. The LaGrange factors  , , , , ,dn sn dpk spk n pk        
weight the contribution of each term in the cost function.  

So far as the computation of 2H  is based on the controllability Gramian the closed loop 
system should be stable and fully controllable over the whole optimization procedure, therefore the 
total cost function should include another term called penalty function (PF), restricting location’s 
area of the closed loop system poles in the predefined region in the complex plan, the references 
[2 – 4] gives a mathematical model of this penalty function. 

iPFJJ          (10) 

As it was mentioned before, complicated cost function (10) in practical cases is not convex, 
that is why local minima could take place in the optimization. As it is shown in [14 – 16], genetic 
algorithms optimization procedure is the most adequate and suited procedure to solve such 
problems. 

Genetic algorithms. Genetic algorithms are a type of trial-and-error search technique that are 
guided by principles of Darwinian evolution [14 – 16]. Just as the genetic material of two living 
organisms can intermix to produce offspring that are better adapted to their environment, GAs 
expose genetic material, frequently strings of 1s and 0s, to the forces of artificial evolution: 
selection, mutation, recombination, etc. Genetic algorithms start with a pool of randomly-generated 
candidate solutions which are then tested and scored with respect to their utility. Solutions are then 
bred by probabilistically selecting high quality parents and recombining their genetic 
representations to produce offspring solutions. Offspring are typically subjected to a small amount 
of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory 
solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide 
variety of problems in many fields, including chemistry, biology, and many engineering disciplines. 
GAs are applied to solve difficult problems where the fitness function to be optimized does not 
guarantee the existence of the derivative and satisfies multi-objectives, which can be contradictory. 
In this work the initial population is generated for the Kalman gain matrix L  and static gain matrix 
K , the fitness function given in the equation (9). Several selection methods were developed, in our 
case the normalized geometric distribution [14] is used. In this study the arithmetic crossover was 
adopted as a crossover function. The multi-non uniform mutation distribution is used to mutate the 
individual. 

Simulation results and conclusions. In the computations of the initial Kalman gain matrix 
the following covariance matrices of the process and measurement noises are used 

  0,05 0,05nR diag ,   0,2 0,01 1nQ diag , and are defined by the corresponding accuracy of 
the sensors. The weighting matrices rr RQ ,  for the optimal deterministic performance are given as: 

  0,1 0,1 0,01 0,04 0,02 0,1 0,1 1 0,1 0,01 0,1rQ diag    0,031 0,1rR diag , as stated before 
Kalman filter uses 3 measurements to restore 11 states. Using the above covariance matrices the 
initial Kalman gain matrix in (7) is given as follows:  

0.048 0.2108 0.0366 0.0086 0.0005 0 0.0009 0.006 0.0149 0 0
0.2961 0.7463 0.1905 0.0715 0.0209 0.0001 0.0033 0.0252 0.0501 0 0
0.0003 0 0.0002 0.0006 0.002 0 0 0 0 0 0
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     
  

L  

After the optimization procedure optL  is found as follows: 

0.0672 0.5561 0.0334 0.194 0.0003 0 0.0005 0.0002 0.0095 0 0
0.1686 1.3105 0.1361 0.0065 0.0053 0.0002 0.0012 0.0014 0.0185 0 0
0.0005 0.0001 0.0002 0.0025 0.0128 0 0 0 0 0 0

T

opt
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L . 
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As well as the state feedback gain matrix before the optimization is given in the following:  
0.0378 0.3984 0.2562 1.2077 0.5958 0.1568 242.02 9.6414 0.6951 6.0842 0.0341
1.6237 0.4357 4.8161 1.4632 0.1887 0.3289 99.77 21.3978 10.94 0.6936 8.4828

      
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K . 

The feedback gain matrix after the optimization procedure optK  is found as follows: 

0.0833 0.1345 0.2114 0.6525 1.3823 0.0621 1.87 11.87 0.51 0.3326 0.01
0.6023 0.058 2.0817 3.1566 0.3706 0.4378 30.44 7.2748 3.8429 2.2514 18.62opt

         
       

K . 

The simulation results are shown in figures 2 and table:  
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Fig. 2. Simulation results of UAV lateral motion: a – heading angle in deg; b – ruder deflection in deg; 
d – yaw rate in deg/sec; e – bank angle in deg; c – aileron deflection in deg; f – roll rate in deg/sec 
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2H  and H  norms of sensitivity function and complementary sensitivity function 

Conclusion. The simulation results of the lateral channel of the UAV prove the effectiveness 
of the proposed control method. The required flight performances are respected as well as the 
robustness of the control law. It can be seen that the handling quality of the nominal and the 
perturbed models are satisfied. The heading of the UAV is held at the reference signal ( 60 deg ) as 
shown in the fig. 2, a, the maximum angles deflection of the ruder and aileron are 

1,3 deg 0, 2 degr     and 1,1deg 1,7 dega    , respectively. The other angle deflections for 
such UAV are respected as it can be seen in the latter figures. The compromise between the 
performances and the robustness is assured as it is shown in the figure. 

References 
1. Magni J.-F. Robust Flight Control. A Design Challenge / Magni J.-F., S. Bernani,             

J. Terlouw – London: eds. Springer, 1997. – 649 p.  
2. Tunik A. A., Abramovich E. A. Parametric Robust Optimization of Digital Flight Control 

Systems / A.A. Tunik, E.A. Abramovich // Proceedings of the National Aviation 
University. – 2003. – №2. – P. 31 – 37.  

3. Tunik A. A., Galaguz T. A. Robust Stabilization and Nominal Performance of the Flight  
Control System for Small UAV / A. A. Tunik, T. A. Galaguz // Applied and 
Computational Mathematics. – 2004. – Vol. 3, №1. – P. 34 – 45. 

4. Ackermann J. Parameter Space Design of Robust Control Systems / J. Ackermann // IEEE 
Transaction of Automatic Control. – December 1980. – Vol. AC-25, № 6. – P. 1058 – 1072. 

5. http:// www.u-dynamics.com 
6. Tunik A. A, Touat M. A. Structured Parametric Optimization of Multivariable Robust 

Control based on Genetic Algorithms / A. A Tunik, M. A. Touat // National Aviation 
University (NAU) proceeding. – 2008. – № 2 (35). – P. 10 – 17. 

7. Aerospace Blockset TM 3, user’s Guide,  www.mathworks.com 
8. McLean D. Automatic Flight Control Systems / McLean D.- Englewood Cliffs: Prentice 

Hall Inc.,1990. – 593 p. 
9. Квакернаак Х. Линейные оптимальные системы управления / Квакернаак Х., Сиван Р. 

– М.: Мир,1977. – 653 с. 
10.  Geromel G. C. Output Feedback Controllers: Stability and Convexity / G. C. Geromel, 

C. C. De Souza, R. E. Skelton // IEEE Transactions on Automatic Control. – January, 
1998. –Vol.43, № 1. – P. 120 – 125. 

11.  Srinivasan K. Control System Design Using State Space Methods / K. Srinivasan // In the 
book “Instrumentation, Systems, Controls, and Mems. Mechanical Engineers Handbook”; 
edited by M. Kutz.- [the 3rd edition.].– John Wiley & Sons Inc. – 2006. – P. 757 – 788. 

12.  Schoemig E. Mixed H2/H Control of Multi-model Plants / E. Schoemig, M. Sznaier // 
Journal of Guidance, Control and Dynamics. – 1995. – No.3, May-June. – P. 525 – 531.  

13.  Doyle J. C. State Space Solution to Standard H2 and H-infinity Control Problems /            
J. C. Doyle, K. Glover, P. P. Khargonekar, B.A. Francis // IEEE Transaction of Automatic 
Control. – August 1982. – Vol. 34, № 8. – P. 831 – 847. 

14.  Houk C. R. A Genetic Algorithm for Function Optimization: A Matlab Implementation / 
Houk C. R., Joine J., Kay.- ACM Transaction on Mathematic Software. – 1996. – 14 p. 

Plant 2H  Deterministic 2H  Stochastic H  
Vn = 30 [m/s] nominal 0,8377 0,8315 3,0084 
Vp1 = 25 [m/s] Perturbed 1 0,6167 0,6096 3,0082 
Vp2 = 35 [m/s] Perturbed 2 1,2149 1,2091 3,0473 



ISSN 1990-5548  Електроніка та системи управління.  2009. №1(19)_____________________      133 

15.  Fleming P. J., Purshouse R. C. Genetic Algorithm in control systems Engineering /            
P. J. Fleming, R. C. Purshouse. – Research Report №796 Department of Automatic 
Control and System Engineering, University of Sheffield, UK, August 2001. – 44 p. 

16.  Yi-Bo Hu A New Penalty based Genetic algorithm for Constrained Optimization Problems 
/ Yi-Bo Hu, Yu-Ping Wang, Fu-Ying Guo // Proceedings of the Fourth International 
Conference on Machine Learning and Cybernetic.-Guangzhou. – 18–21 August 2005. –      
P. 3025 – 3029. 

 
M. A. Туат 
Робастная оптимизация многомерной системы управления боковым движением 
беспилотного летательного аппарата на основе генетических алгоримов 
Рассмотрена процедура синтеза робастного закона управления для бокового движения 
беспилотного летательного аппарата с использованием процедуры HH 2 – робастной 
оптимизации на основании генетических алгоритмов. Качество и робастность системы 
управления оценены с помощью 2H -нормы для функции чувствительности и H -нормы для 
комплементарной функции чувствительности. Комплексный показатель “робастность-
качество” оптимизирован с помощью генетического алгоритма для нахождения компромисса 
между качеством и робастностью системы управления. Результаты моделирования 
замкнутой системы свидетельствуют об эффективности предложенной процедуры.  

 
M. A. Туат  
Робастна оптимізація багатомірної системи керування бічним рухом безпілотного 
літального апарата на основі генетичних алгоритмів 
Розглянуто процедуру синтезу робастного закону керування для бічного руху безпілотного 
літального апарата з використанням процедури HH 2 -робастної оптимізації на основі 
генетичних алгоритмів. Якість та робастність системи керування оцінено за допомогою    

2H -норми для функції чутливості та H -норми для комплементарної функції чутливості. 
Комплексний показник “робастність-якість” оптимізовано за допомогою генетичного 
алгоритму з метою відшукання компромісу між якістю та робастністю системи керування. 
Результати моделювання замкненої системи свідчать про ефективність запропонованої 
процедури. 
 
 


