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The design of flight robust control law is always a challenge to the engineer. This difficulty is
more actual in the area of the unmanned aerial vehicles (UAVs), which are vulnerable to the
internal and external disturbances. This paper is devoted to the design of flight robust control
law for the lateral channel of UAV based on H , / H _ -robust optimization. The task is divided
into two stages, in the first stage a linear quadratic Gaussian (LQG) is synthesized based on the
separation theorem. The second stage is consecrated to the robust optimization of the
aforementioned regulator. It is known that the genetic algorithm optimization is more robust
than traditional optimization procedures, also it has the propriety to converge to the global
minimum and well suited to seek a compromise between multi-objectives function. The
simulation results prove the efficiency of the proposed procedure.

Introduction. During the recent years, the unmanned aerial vehicles (UAVs) have proved to
hold a significant role in the world of the aviation. Since, it accomplishes a variety of tasks, starting
from military investigation to civilian and scientific researches. Consequently, this area brought a
great interest to the scientific community, in order to develop the field and make it more flexible
and accurate.

The most expanded area is the flight dynamic control, which makes the UAVs full
autonomous or semi-autonomous. The design of such systems is a challenge and requires
engineering skills. As it is known, the UAVs during the flight are subjects to the disturbances,
which could be external produced from the change in atmospheric conditions and internal ones
caused from the change of the parameters of the UAV's during the flight. Therefore, the control law
designed for the nominal flight parameters may not perform in the same way when disturbances
occur. Hence, to overcome these difficulties and ensure the handling qualities the control law
should be robust.

The flight robust control, is widely developed due to its characteristics [1 — 4] allowing the
rejection of exogenous and endogenous perturbation. The technique used in this paper is based on
H,/H_ -robust optimization. This technique is divided into two stages; in the first a linear
quadratic Gaussian is designed based in the separation theorem, the second level of this method is
to “robustify” the control law, this is given by the aforementioned optimization method. The cost
function used in this optimization, is computed using H,-norm of the sensitivity function to
estimate the performances of the closed loop system and H_-norm of the complementatrity
sensitivity function to quantify the degree of robustness. The mixed H,/H_ -optimization is used
to find a trade-off between the multi-objectives of the performance and the robustness to satisty the
handling qualities of the aircraft flight.

To prove the effectiveness of this method, the lateral channel Aerosonde UAV in coordinate
turn is used as a case study. It is necessary to notice, that robust optimization of the longitudinal
motion of UAV was considered in [5]. In this paper the approach developed in [6] is expanded at
the control of lateral motion.

The first stage: LQG regulator synthesis. Let the following state space model describe the
lateral channel of the UAV,
X=AX+BU+Gw

(D
Y=CX+DU+n
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where i is the number of mathematical models used for description of the UAV dynamics
(i=1,2,3). To prove the effectiveness of the method used in this paper, three models are generated
form the linearization of the Aerosonde nonlinear model [5]. These models correspond to 3 values
of the true airspeed V', due to the dependency of the UAV dynamics on this variable. The first
model matrices (2) constitute the nominal plant and correspond to ¥ =30m/sec, the matrices (3)

and (4) correspond to the parametrically disturbed plants with ¥, =25m/sec, V, =35m/sec,

respectively.
-0.83 0.57 -30 9.78 0 213 5.44
~548 27 -13 0 0 ~187.35 3.37
A, =/ 08 -35 -136 0 0|5 B, =| -739 3441 (2)
0 1 002 0 0 0 0
00 1 0 0] 0 0 |
[-0.69 121 -25 980 0] [-1.48 378
~4.55 224 108 0 0 ~129.8 236
A,=| 073 29 -1.13 0 0|5 B,=|-512 -236/5 €)
0 1005 0 0
|0 0 1 0 o] |0 0 |
[-0.97 0.06 -35 9.81 0] [ 29 74
~6.38 3144 1513 0 0 ~254.7  4.58
A,=| 1.04 -4.078 -158 0 0[5 B,=|-10.04 -46.8|- (4)
0 1 0001 0 0 0 0
|0 0 1 0 o0 |0 0 |

The state vector is X=[v p r ¢ ], where vis the lateral velocity component, r is the

yaw rate, p 1is the roll rate, ¢ is the bank angle and wis the heading angle. The control inputs
U=[s,
disturbances, n represents the measurements noises. The matrix G, is defined by the model of the

atmospheric conditions and the mathematical model of the UAV [2; 6]. The model of the
atmospheric conditions used here is a Dryden filter defined by the following quadruple of
matrices[4,,, B, , C,,, D,, |, the numerical values of this model can be computed as follows [7]:

SV] are ailerons and rudder, respectively. The vector w in (1) stands for the processes

Lo 0 o0 &, ] ]
T, — 0
o 0 1 0 ! 600 0
Adr = 0 __1 __2 O , Bdr = 0 0 ) Cdr = 0 kv kv}\’ v 0 (5)
12 T 0 i kv kv}\‘v _kr
v v T 0o _r
ko kL, - ' LI A
0 = == — 0 0 -
L T, T, T, - -

where 1, =4b/nV, k, =

k,=1/V and 1, =L /V.
L, and L represent the turbulence scale lengths; o, , o, are the r.m.s values of turbulent

wind lateral and vertical velocities.

(o OBV (m/4b)") 1,1 5, =L,V 2, =NV, k=0 L[V,



128 ISSN 1990-5548 Enexmponixa ma cucmemu ynpagainus. 2009. Nel(19)

The computation of these values depend on the altitude at which the aircraft is flying, in our
case the models represented in (2), (3) and (4) are obtained for the altitude 4 =200 m. The inputs to
the filter (5) are white Gaussian noises corresponding to the lateral wind gust component and
vertical one; the outputs are the lateral turbulent speed component v, , the turbulent yaw rate r, and

turbulent roll rate p, .

So far we have three values of V' (25,30,35 m/sec ), three filters would be taken in account.

The models of the actuators are approximated by the first order model given by the transfer
function:
1

1+t s

act

act

In this work we suppose that we have three sensors to measure r, p, v, which are affected
by noises, the remaining states are estimated by Kalman filter.

After connecting Dryden filter and the actuators to the model of the UAV, the extended model
is formed and is given by the following matrices:

Aun GonCo | Buw  GronB

Aex Bex nom nom nom = dr
C D = 0rxn Adr 0rxq B dr : (6)
“ “ Cnom 0 pxr | Dnom 0 X2

It can be seen, that the extended model given in (6) has 11 states and it known that, in the area of
unmanned vehicle the designer should minimize the number of airborne sensors used to measure the
controlled states, but some variables should be known to ensure a good control. Therefore, Kalman
filter is used to restore the full states vector using three measurements corresponding to yaw rate r,
roll rate p and heading angle . After the filtering estimation of the full state vector, the linear

quadratic regulator (LQR) is used to control the aircraft, this theory is known as separation theorem
[9—11].
The optimal Kalman filter is defined as:

X=4,X, +BU+L(Y-C, X, -DU),

HEHR R

L is the Kalman gain matrix given by the following expression:
L=PC! R} (7
where P is the unique positive-definite solution to the following Algebraic Riccati Equation

(ARE):
A _P+PA’ +B, 0, BT —PC'R;'C_P=0

O, and R, are the covariance matrices associated with the measurement and process noises,
respectively. The state feedback K is given in the following expression:

K=R'B!S (8)
where § 1is the unique positive definite matrix of (4RE) associated with the optimal feedback
problem:

Al S+SA4,—SB,R'B.S+0=0

and the optimal control law minimizing the performance index, is as follows:

U=-KX

ex *
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The state space model of the closed loop system shown in fig.1 is given by the following

equations:
X A, -B, K X
X| |LC, A -LC -B K|X|

Stage two: robust optimization. As stated before, the most wanted and valuable property in
flight control system is the robustness without loosing performances. Many methods were proposed
in the literature to recover the robustness of the closed loop system [4]. In this section, we will
discuss this property and propose a solution to this crucial problem in flight dynamic. The method
used is based on H,/H_, -robust optimization [7; 12]. During flight various uncertainties occur due
to the parameters change. These uncertainties could be external and/or internal, structural and/or
unstructured, which produce certain deviation from the nominal behavior to perturbed one. The idea
is to find a compromise between the robustness and the performances for any perturbed model of
the closed loop system with a single controller designed for the nominal plant. The design
algorithm, 1s to estimate the performance and robustness of the closed loop system using H, -norm
of the sensitivity function and H_-norm of the complementary sensitivity function, then try to find
the compromise between this two properties. For this reason, the solution to this problem to this
problem is to insert several objectives in one cost function and try to satisfy them at the same time,
it is known as multi-objectives optimization problem [13 — 15].

The optimization variables are the Kalman gain matrix L and the regulator gain matrix K,
their initial values are computed in equations (7) and (8), respectively. The optimization procedure
adopted in this paper is based on genetic algorithm, this technique is known as a suited method for
multi-objectives optimization problems [14]. The block diagram shown in fig. 1, gives an overview
of the scheme used in this study:

i Xdr =4 X +B7 i . z
——— X =AX + BU + Gw———>
w= Cer +Ddr77 Z=C,X+D,U

— —~ NY=C,+D,U+v

Genetic Algorithm

optimization

X = Adp) Xe+BAD)Y]
U=C(p) Xe+D(p)Y

T

Fig. 1. Closed loop system ( p is a vector of adjustable parameters of controller)

The performances and robustness are estimated for the three models, defined in the last
section, by computing the H,/H_, -norms for the closed loop system depicted in fig. 1, for different
scenario (In stochastic case and deterministic case). The composite performance index is given in
the following [2; 3; 6]:

Jz}\‘dn HUZ dn+}\'.m

2

dpk

S (Ve ) Z e (s )+ s (Il )

dn . . e .
where ||H UZ”Z defines the H,-norm of the nominal model in deterministic case,

sn +}\'

2 oon

H
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kZ::I”H UZ”""'; stands for summation of the H,-norms of the two perturbed models. ||Twz||:0 1s the

2
H_— norm and gives the estimation of the robustness of the nominal controlled plant, ZHTWZ”:k
k=1

computes the summation of the H_ -norm for two parametrically disturbed plants. ||H UZ”Z" defines

the performances of the nominal stochastic model, the same summation of the H, — norm being
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The computation of these

A A A A

spk
2

2
defined for the two perturbed models with the expression Z”H vz
k=1

quantities is given in [2; 3; 6; 13]. The LaGrange factors A,, A, A, Ay, A, A,
weight the contribution of each term in the cost function.

So far as the computation of H, is based on the controllability Gramian the closed loop
system should be stable and fully controllable over the whole optimization procedure, therefore the
total cost function should include another term called penalty function (PF), restricting location’s
area of the closed loop system poles in the predefined region in the complex plan, the references

[2 — 4] gives a mathematical model of this penalty function.
Js =J + PF, (10)

As it was mentioned before, complicated cost function (10) in practical cases is not convex,
that is why local minima could take place in the optimization. As it is shown in [14 — 16], genetic
algorithms optimization procedure is the most adequate and suited procedure to solve such
problems.

Genetic algorithms. Genetic algorithms are a type of trial-and-error search technique that are
guided by principles of Darwinian evolution [14 — 16]. Just as the genetic material of two living
organisms can intermix to produce offspring that are better adapted to their environment, GAs
expose genetic material, frequently strings of Is and Os, to the forces of artificial evolution:
selection, mutation, recombination, etc. Genetic algorithms start with a pool of randomly-generated
candidate solutions which are then tested and scored with respect to their utility. Solutions are then
bred by probabilistically selecting high quality parents and recombining their genetic
representations to produce offspring solutions. Offspring are typically subjected to a small amount
of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory
solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide
variety of problems in many fields, including chemistry, biology, and many engineering disciplines.
GAs are applied to solve difficult problems where the fitness function to be optimized does not
guarantee the existence of the derivative and satisfies multi-objectives, which can be contradictory.
In this work the initial population is generated for the Kalman gain matrix L. and static gain matrix
K, the fitness function given in the equation (9). Several selection methods were developed, in our
case the normalized geometric distribution [14] is used. In this study the arithmetic crossover was
adopted as a crossover function. The multi-non uniform mutation distribution is used to mutate the
individual.

Simulation results and conclusions. In the computations of the initial Kalman gain matrix
the following covariance matrices of the process and measurement noises are used
R, =diag([0,05 0,05]), O, =diag([0,2 0,01 1]), and are defined by the corresponding accuracy of

the sensors. The weighting matrices O, R, for the optimal deterministic performance are given as:
0, = diag([0,1 0,1 0,01 0,04 0,02 0,1 0,1 1 0,1 0,01 0,1]) R =diag([0,031 0,1]), as stated before

Kalman filter uses 3 measurements to restore 11 states. Using the above covariance matrices the
initial Kalman gain matrix in (7) is given as follows:

0.048 0.2108 0.0366 0.0086 0.0005 0 ~0.0009 —0.006 —-0.0149 0 0]
L=]0.2961 0.7463 0.1905 0.0715 0.0209 0.0001 -0.0033 -0.0252 -0.0501 O O
0.0003 0 0.0002 0.0006 0.002 0 0 0 0 00

After the optimization procedure L, is found as follows:

0.0672 0.5561 0.0334 0.194 0.0003 0 -0.0005 —0.0002 —0.0095 0 0]
L, =|0.1686 13105 0.1361 0.0065 0.0053 0.0002 -0.0012 -0.0014 -0.0185 0 O
0.0005 0.0001 0.0002 0.0025 0.0128 0 0 0 0 00
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As well as the state feedback gain matrix before the optimization is given in the following:

_10.0378 -0.3984 —-0.2562 -1.2077 -0.5958 0.1568 242.02 -9.6414 0.6951 6.0842 —0.0341
16237 04357 -4.8161 14632 —0.1887 —0.3289 —99.77 -21.3978 1094 —0.6936 8.4828

The feedback gain matrix after the optimization procedure K, is found as follows:

opt

_[-0.0833 -0.1345 -0.2114 -0.6525 -1.3823 -0.0621 -1.87 -11.87 0.51 03326 -0.01
10,6023  0.058 —2.0817 3.1566 —0.3706 —0.4378 —30.44 7.2748 3.8429 -22514 18.62

The simulation results are shown in figures 2 and table:
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Fig. 2. Simulation results of UAV lateral motion: a — heading angle in deg; b — ruder deflection in deg;
d — yaw rate in deg/sec; e — bank angle in deg; ¢ — aileron deflection in deg; /' — roll rate in deg/sec
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H, and H_ norms of sensitivity function and complementary sensitivity function

Plant H, Deterministic H, Stochastic H,
Vn =30 [m/s] nominal 0,8377 0,8315 3,0084
Vpi1=25 [m/s] Perturbed 1 0,6167 0,6096 3,0082
Vpr= 35 [m/s] Perturbed 2 1,2149 1,2091 3,0473

Conclusion. The simulation results of the lateral channel of the UAV prove the effectiveness

of the proposed control method. The required flight performances are respected as well as the
robustness of the control law. It can be seen that the handling quality of the nominal and the
perturbed models are satisfied. The heading of the UAV is held at the reference signal (60 deg ) as

shown in the fig. 2, @, the maximum angles deflection of the ruder and aileron are
—-1,3deg <96, <0,2deg and —1,1deg<d, <1,7deg, respectively. The other angle deflections for

such UAV are respected as it can be seen in the latter figures. The compromise between the
performances and the robustness is assured as it is shown in the figure.
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M. A. Tyar

PobacTHass onTuMH3anMsi MHOTOMEPHOH CHCTeMbl YNPaBJeHMS OOKOBBIM [IBHKEHHEM
0ecMJIOTHOTO JIETATEJbHOI'0 ANNIApaTa HA OCHOBE F'eHeTHYEeCKUX AJTOPUMOB

PaccmoTpena mpouenypa cuHTe3a poOACTHOTO 3aKOHA YIpaBJiCHHs A OOKOBOIO JBHKEHHS
OECIIMIIOTHOTO JIETATEIFHOTO armapara ¢ HCIOoNb30BaHueM mpouenypst H,/H, — pobacTHOi
ONTUMM3ALIMM Ha OCHOBAHHWU T'€HETUYECKHX airoputmoB. KadecTBO M poOACTHOCTH CHCTEMBI
YIPaBJIEHUS OLIEHEHBI C IIOMOLIBIO /1, -HOPMBI 17151 QYHKIMHM YyBCTBUTEIBHOCTU U [ -HOPMBI JUIs
KOMIUIEMEHTapHOW (YHKIIMM YyBCTBUTEIHHOCTH. KOMIUIEKCHBIN mMoKa3arens ‘“poOACTHOCTH-
KayecTBO ONTHUMHU3HUPOBAH C MOMOLIbIO0 TEHETUYECKOTO aJITOPUTMa JUIsl HAXOKIEHUSI KOMIIpOMHCCca
MEXAY KayecTBOM M pOOACTHOCTbIO CHUCTEMBl YyIpaBieHHUs. Pe3ynbTaThl MOJEIUPOBAHUS
3aMKHYTOM CHUCTEMBbI CBUJIETENBLCTBYIOT 00 3(h(hEeKTUBHOCTHU MPEUI0KEHHON IPOLEAYPHI.

M. A. Tyar

PobacTtHa onTuMmizaunisi 6araTtomipHoi cucTeMH KepyBaHHsl OiYHMM pyXoM 0e3MiJIOTHOIO
JIITAJbHOI0 ANAPaTa HA OCHOBI FeHETHYHUX AJITOPUTMIB

PosrnsinyTo mpornenypy cuHTe3y poOacTHOTO 3aKOHY KepyBaHHS JJiA O1YHOTO pyXy O€3MiTOTHOTO
JNTaJBHOTO amapara 3 BHKOPHUCTaHHsM mpouenypu H,/H  -poGacTHoi onrumizamii Ha OCHOBI
FeHETUYHUX aJrOpUTMIB. SIKICTh Ta poOACTHICTh CHUCTEMHU KEPYBAHHS OLIIHEHO 3a JIOIOMOTIOIO
H,-HopMmu ans QyHKUIT yyTnMBOCTI Ta H  -HOPMHU JUIsl KOMIUIEMEHTApHOI (DYHKIII Y4yTIMBOCTI.
KommnekcHuil moka3HUK “poOaCTHICTB-SIKICTH ONTHUMI30BAHO 3@ JIOTIOMOIOK T'€HETHUYHOTO
QITOPUTMY 3 METOIO BIIIIYKaHHS KOMIIPOMICY MIX SIKICTIO Ta pOOACTHICTIO CUCTEMM KEPYBAaHHS.
Pe3ynbratu MoJeNIOBaHHS 3aMKHEHOI CHCTEMHU CBIAYaTh MPO €(QEKTUBHICTH 3alpPONOHOBAHOT
IPOLETYPH.



