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Introduction

Neural networks containing at least one hidden
layer play a role of universal models for any rea-
sonable complex nonlinear systems, in particular,
flight control systems. Namely, for the reliable oper-
ation of the modern aircraft control systems it is ne-
cessary to ensure the timely detection of failure situ-
ations, their localization and reconfiguration of the
onboard control system. Currently, active studies in
the application of the neural networks for designing
fault-tolerant aircraft control systems are conducted.
Again, the problem of synthesizing the algorithms for
the detection and faults localization and the system
reconfiguration using of neural networks is shown.
Effectiveness of the proposed approach is confirmed
by the results of simulation of the flight control sys-
tem of the aircraft using a nonlinear mathematical
model of F-16 fighter.

The fact above mentioned motivates the theoret-
ical studies of learning algorithms for the neural
network models. Significant breakthrough in this
research area has been achieved in recent works
[1]-[12]. Namely, the convergence results have been
derived in [11] provided that input signals have a
probabilistic nature. In their stochastic approach, the
learning rate goes to zero as the learning process
tends to infinity. Unfortunately, this gives that the
learning goes faster in the beginning and slows down
in the late stage.

The convergence analysis of learning algorithms
with deterministic (non-stochastic) nature has been
given in [12] by assuming that the learning set is
finite. The difficulties in establishing the conver-
gence results are that the neural networks contain the
parameters which appear nonlinearly in their equa-
tions. To the best of author’s knowledge, there are no
results in literature concerning the convergence

properties of training procedures with a fixed step
size applicable to the case of infinite learning set.

This paper extends the recent work [13] of the
authors. The main effort is focused on establishing
conditions under which the online gradient algo-
rithms applied for sequential learning neural network
models with a constant step size will converge in the
case of infinite learning set.

Problem statement
Let

y=F(x) (1

be some nonlinear unknown function describing a
complex system. In this equation, y IR and
xeIR"Y are the output scalar and input vector va-

riables, respectively, available for the measurement at
each nth time instant (n =1, 2,...). This implies that

y(n) = F(x(n-1)) 2

with an unknown mapping F: IR — IR.

To approximate (1), the two-layer neural network
model containing M (M =1) neurons in its hidden

layer is employed. The inputs to the each j th neuron
of this layer at the time instant » are the components
of x(n—1). Its output signal at the nth time instant is

given by
N

y‘g-')(n) = G(b;-]) + Zw;')xi(n - 1)], j=L..., M, (3)
i=1

where x;(n—1) denotes the ith component of
x(n-1), and w{’ and b\" are the weight coeffi-

cients and the bias of this j th neuron, respectively.
o(-) represents the so-called activation function.
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There is only one neuron in the output (second) layer,
whose inputs are the outputs of the hidden layer’s

neurons. The output signal of second layer, y* (n),
at the time instant » is determined as

M
YO = WPy () +b?, “)

J=1

(2)

where w 2)

,...,wy, are the weights of this neuron

and b is its bias.

Since o(-) is assumed to be nonlinear, it follows
from (3), (4) together with (2) that y* (n) is a non-
linear function depending on x(n—1) and also on the
(M (N +2)+1) -dimensional parameter vector

1 1
w=[w](,),...,w§\,{,

W, W pOYT

1 1 1 1)
b, ow L owlh b

To emphasize this fact, define the output signal of
the neural network in the form

»?(n)=NN(x(n-1), w) )

with NN: IRV x IRV 5 IR,
The following basic assumption is made. There

exists at least an unique w=w"eIRYV** guch

that F(x) can explicitly be approximated by
NN(x, w") in the sense of

F(x)=NN(x, w") (6)

for all x from a given compact set X < IR". This
assumption mentioned in [14] as the ideal case has
only the mathematical meaning. Its introduction is
motivated by the fact that the standard gradient type
learning procedure with a constant step size cannot
converge in the non-ideal cases if there is an infinite
subsequence {x(n,}:= x(n,), x(n,),... satisfying

x(n,)e X \{x: F(x)—NN(x,w)=0} (k=12,..)

for any fixed w.
Define the infinite sequence {(x(n—1), y(n))},_,
of the measurable pairs in which x(n—1)s are taken

from X. Then, the online learning algorithm for
updating the parameter estimate w(n) is formulated

as the following standard recursive gradient proce-
dure:

wn)=w(n-1) ;
+n e(n,w(n —1)) grad, NN(x(n —1), w(n —1)). @)

In this algorithm,
e(n,w(n—=1))= y(n) =NN(x(n—-1), w(n-1)) (8)

is the current estimation error and the variable
grad, NN(x(n—1),w(n—1)) denotes the gradient of
NN(x,w) at the
1 =const >0 is its step size (the learning rate).
Equations (2) and (7) together with (5), (6) and (8)
describe the closed-loop system for sequential
learning of the neural network exploiting as a model
of (1). For better understanding its performance, the
structure of this system is depicted in Fig. 1.

point w=w(n-1), and

u(n) N Nonlinear _ y (’i)
¥| System ”
" e(n)
Neural Network N
n
A : y m(g ( )
— V|
[
| N Leaming |
— V| Algorithm [

Fig. 1. Configuration of learning system

The problem is to study the properties of sequence
{w(n)} caused by (7), (8) as n tends to c (in some
sense specified below).

Basic definitions and investigation tool

Before going to study the asymptotical properties
of {w(n)}, we need some preliminaries including

several definitions.
Definition 1 [13]. Introduce the notation x(n, )

of a scalar variable which depends on an ® as on
peculiar event parameter for every fixed n. Let {®}

be a set of ws. Then, for any integer » and for arbi-

M (r)

trarily chosen numbers x'’,...,x'"’, the sequence

{x(n, ®)} is said to be non-stochastic (irregular) on
IR in wide sense if these is some ® € {®} such that

O

x(1, o) =xY,..., x(r, ®) = x". )

In contrast to the purely stochastic representation,
the sequence given in (9) is quite not predictable: for
example, there is no its expectation, in general. Note
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that in the particular case where {®} contains a sin-
gle o, the sequence satisfying (9) becomes simply
deterministic.

To analyze the asymptotic behavior of (7), (8), the
scalar non-negative function V(w) given by

V(w)=0 for w=w", V(w)>0 for w=w (10)

is exploited.
In the presence of the one-point set W"* = {w"},
the function V' (w) satisfying (9) is usually chosen as

2

Vw) =|w -, (11)

where |||| denotes the usual Euclidean vector norm. It
turned out that if the neural network contains the
hidden layer, then W™ consists of several isolated

w’s. In particular, in the simplest case, when there is
one neuron in the hidden layer (N =1, M =1) and

the activation function, o(-) is described by

o(s)=[1+ exs(—s)]f1 , (12)

W™ contains two points: w* =[wi, wy, w;, w;]"

2 T
and w*® =[-wi, —w;, —wi, wi +w;]".

In the case when W is not one-point, instead of
(11), ¥V (w) may be chosen as follows:

V(w)= inf

« 2
w —Ww| .
wiew”

(13)
It can be observed that V' (w) specified by (13) is
not continuous (in contrast to (11)).
The wvariable V,:=V(w(n)) becomes imme-
diately the Lyapunov function of the algorithm (7),
(8) if only

V. (14)

Since V, >0, the condition (14) under which V,
does not increase is sufficient for existing a limit

V,<V,,

lim V,=V,,

n—0

(15)

where V=V, (®) is a random value (in general)
depending on w(0) and {x(n)}. Nevertheless, the

property (14) is not necessary for existing its limit.

On the other hand, this limit may not exist.
Definition 2. The algorithm (7), (8) will be called

weakly convergent if the limit (15) with V_ #0

exists.

Definition 3. The algorithm (7), (8) will be called
strongly convergent if lim, . V(n)=0 meaning
that W(Vl)w W*.

Any non-negative ¥V, which is the Lyapunov

function of the learning algorithm (7), (8) may be
employed as a tool to derive its convergence proper-
ties if {x(n)} is a non-stochastic sequence. It turns

out that in stochastic case, its counterpart satisfying
EV, NV, s Vo <V, (16)

plays the role of the similar Lyapunov function (in-
stead of (14)). In this expression, the symbol E{V, |-}

denotes the conditional expectation of random V.

Note that {V,} specified by (16) is known in the
probability theory as the supermartingale [15].
An asymptotic property of learning algorithm
We first observed in simulation examples that the
sequence {w(n)} may not converge in the presence
of non-stochastic {x(n)} from X. Such an ultimate
feature of (7), (8) implies that

(17)

lim w(n) =w,
n—>0

may not exist. Nevertheless, if (17) is achieved, then
the following result can be established:

a) {w(n)} convergestosome w, €liminf /¥, , in
sense of (17) where

liminf W, := U (W,

n=l k=n

(18)

denotes the limit set introduced in [15, sect. 1.3] in
which W, :={w: y(n)—NN(x(n—-1), w)=0};

b) the estimation error given by (8) vanishes as n
goes to infinity:

(19)

lim e(n,w(n—1))=0.

Note that the limit set liminf W, represents a

nonlinear manifold on IR”¥*?* \whose dimension

satisfies 0 <dim lim inf W, <M (N +2).

It can be understood that the algorithm (7), (8)
“attempts” to solve the infinite set of the equations

y(n)—=NN(x(n-1),w)=0, n=12,... (20)

RM(N+L+2)+I In fact,

with respect to unknown wel
this algorithm may give the solution w=w, of the
remainder of (20), which is determined as the limit

set (18) butnota we W™,
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It is important to observe that if (19) is satisfied,
then the algorithm (7), (8) ensures the so-called
functional identification of (1) [13]. In this case, the
discrepancy between the outputs of the system (1) to
be identified and its neural network’s model

Ymod (l’l) = NN(X(I’I - 1)a W)
depicted in Fig. 1, for w=w(n—1) goes to zero as
n—> o,
Observations

To study the asymptotic properties of (7), (8) in
the presence of non-stochastic {x(n)}, four simula-
tion experiments with the scalar nonlinear system

_3.75+0.05exp(—7.15x)
1+0.19exp(—7.15x)

were conducted. This nonlinear function can expli-
citly be approximated by the two-layer neural net-
work described by (3), (4), (12) with the components

of two w=w"", w=w"® summarized in the table.

Parameters of neural network model

Exp. Parameter w | pD | @ | p@
No 11 | |
Components
| 715 | 165 | 3.45 | 03
of w
1-4
Components
vy | 715 | -1.65 | -3.45 | 3.75
of w
Initial 1.40 |-0.10 | -0.56 | 0.46
1 estimate
Final ~7.1 |~16|~34|~03
estimate
Initial 0.53 |-0.50 | -0.92 | 1.04
2 estl.mate
Final 541 | 132 | 3.82 |-0.05
estimate
Initial 038 |-057 | -0.98 | 1.14
3 estimate
Final 503 | -152 | 420 | 3.78
estimate
Initial 1.40 |-0.10 | -0.56 | 0.46
4 estimate
Final .
. do not exist
estimate

In all of the experiments, m was taken as
N =0.01 and the duration of the learning processes

was always equal to 40 000 steps.
In the first experiment, {x(n)} was chosen to

achieve the monotonic convergence of {V,} toa V.
Such a choice given that the first difference of V,
defined as AV, :=V,—V,_, was negative. It turned

out that V, =0 meaning the strong convergence of
(7), (8) (in the sense of Definition 3). Fig. 2 demon-
strates this property. In this experiment, {w(n)} with

w(0) =[1.40, -0.10, -0.56, 0.46]" tends approx-
imately to w*" (see the table). Again, V, given by
(13) as

V. =min{V", VI,
where

. . 2
v = ‘ w —w(n)| ", i=1,2

satisfies the identity ¥, =V,\".

50

40
30
20
10

0
0 4000 8000 12000 16000 20000 24000 28000 32000 36000
n
a
0
-0.05
N 01
<1015
02
025 . . . . . . . .
0 4000 8000 12000 16000 20000 24000 28000 32000 36000
n
2
1
© 0
-1
-2
0 4000 8000 12000 16000 20000 24000 28000 32000 36000

n

Fig. 2. Learning processes in simulation experiment 1:
a is the function V,; b is the first difference AV ;

c is the current model error e(n)

Fig. 3 illustrates the learning processes arising in
the second experiment. In this experiment, the se-
quence {x(n)} was taken cyclically from the finite

set X ={-0.4442, 0.5158, 0.8761}. The initial es-
timate w(0) whose components are given in the table
was chosen in order to satisfy V" (0)<V?(0). It
was observed that at an initial stage of the learning
process, the sequence {"} was increasing so that
v >y @ as shown in Fig. 3a. Further, {V"}
became decreasing. Such a behavior of this sequence
leaded to appearing the feature that V" <7,*) for all
sufficiently large n.
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Thus, we see that {/,} is convergent, however its
convergence is not monotonic as in the first experi-
ment. Namely, {w(n)} converges to w, =[5.4120,

1.3172, 3.8233, -0.0475]" which lies on the nonli-
near manifold lim inf W, but not to one of two points

w; =[7.15,1.65,3.45,0.3]" orto w =[-7.15,
-1.65, -3.45, 3.75]".

200

—_—]
180 e 1
- Vi
160 -~ —_———z
-
140
s
120 /
o~ /
2w s
=
S /7
30 i 1
S
&0 1
a0 4
20 1
]
0 500 1000 1500 2000 2500 3000 3500 4000
n
a

0 500 1000 1500 2000 2500 3000 3500 4000
n

b

0 560 10.00 15‘00 20‘00 25‘00 30‘00 35‘00 4000
¢
Fig. 3. Learning processes in simulation experiment 2:

a) are the functions an ; is the function V_;
(a) are the functions ¥V and V?); (b) is the function ¥,
(c) is the current model error e(n)

In the third experiment, the initial vector w(0)
was chosen to be close to that in the second experi-
ment (see Table). As in this previous experiment,
{x(n)} was taken from the same finite set X con-
taining the tree points.

Results of the learning process is shown in Fig. 4.
We observe that in this case, V, =V,® (see Fig. 4a

and b). However, V_ is nonzero because {w(n)}

goes to w=[-5.13, -1.52, -4.20, 3.78]" belonging
to the manifold lim inf /7, determined by (18) but
not to the nearest w*® from W”.

Thus, as in the second experiment we deal with
the weak convergence of {w(n)} (in the sense of

Definition 2) guaranteeing only that e(n) ————>0.

vivz

0 500 1000 1500 2000 2500 3000 3500 4000
n

b

0 500 1000 1500 2000 2500 3000 3500 4000
n

¢

Fig. 4. Learning processes in simulation experiment 3:

(a) are the functions V" and V?); (b) is the function V.
(c) is the current model error e(n)

Results of the second and third experiments are
presented in Fig. 5 showing the nonlinearity
y=F(x) given by (1) and its neural network model
Vimod =F(x,w,) obtained after
40 000 learning steps. It can be see that these nonli-
nearities are “somewhat” different whereas they are
coinciding at three xs which belong to X.

Fig. 6 demonstrates the learning processes taking
place in fourth experiment when {V/,} has no limit

approximations

when {x(n)} is a non-stochastic sequence.
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We see that the model error e(n, w(n—1)) does not
go to zero, as n tends to o.

Fig. 5. The nonlinearities y = F(x) (solid line) and
Ymod = F(x, w,) (dashed line): (@) in the experiment 2;
(b) in the experiment 3

0.6

0.4
X 0.2
o
o 50 100 150 200 250 300
n

-0.2

50

N /\/\/\
]

Fig. 6. Learning processes in simulation experiment 4:
(a) is the input signal; (b) is the function ¥, given by (14);
(c) is the current model error e(n)

Stochastic case

Main theoretical result concerning the asymptot-
ical behavior of (7), (8) in the stochastic case is based

on following additional assumptions: {x;(n)} are the

stochastic sequences of independent random va-
riables having the probability density function

p(x(n)|x(n=1),...,x(0)) = p(x(n)) : = p(x) (21)
with the properties that

P{x(n)e X'} = j L p(x) dx >0, 22)
for any subset X' < X, and
Pix(n)e X" =0 (23)

if dim X" =0, where P{} denotes the probability of
corresponding event.
Let W(w") denote a neighborhood of some

w" eW" which does not contain another points of
W*. With this W (w"), we have established that if
the assumptions (6), (21) — (23) are satisfied and the
conditions

0<n<?2,
j [NN(x, w') = NN(x, w)] grad], NN(x, w)

(W' =w)p(x)dx
> j [INN(x, w") = NN(x, w)T’

' ”gradwNN(xa W)”2 p(x)dx

hold for any xe X and for arbitrary w from
W (w"), then the limit (15) is valid with probability
1. Again,

lim w(n) =w"
n—>0

almost sure (a.s.).

The proof of this result essentially utilizes the
Borel — Cantelli lemma and Doob’s martingale con-
vergence theorem (see [13]).

To evaluate the asymptotical properties of the
algorithm (7), (8) in the stochastic case, a simulation
with {x(n)} generated as the sequence of independent
identically distributed (i.i.d.) pseudorandom numbers
on X =[-1.0, 1.0]. The initial estimates were cho-

follows: w(0)=14, 5" (0)=-0.1,
wi?(0)=-0.56, b (0) = 0.46.

The asymptotical properties of the learning algo-
rithm are illustrated in Fig. 7. It can be observed that

V, depicted in Fig. 7a is not monotonically decreas-

s€én as

ing. Nevertheless, e(n) — 0 as »n increases as shown

in Fig. 7c. This important feature follows from the
fact that (16) is satisfied. Fig. 7d in which the condi-

tional expectation E{V |-} was estimated numeri-
cally, demonstrates this feature.
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n

d

Fig. 7. The learning processes in a stochastic case:
(a) the function V,; (b) the first difference AV ;
(c) the estimation error e(n); (d) the difference between

the conditional expectation of ¥/, and its past value

Conclusion

In general case, the standard online gradient al-
gorithms applied to sequential learning in neural
networks with hidden layer may not converge. To
guarantee their convergence, certain conditions need
to be satisfied.

Simulation examples show the successful ultimate
performance of the gradient learning algorithm used
for identifying of nonlinear systems by means of the
two-layer neural network.
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