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This paper is devoted to the algorithm of state space identification of the flight dynamics models
in the presence of sensor noise and biases. The goal of the identification procedure is not only
the estimation of aircraft stability and control derivatives, but also the biases of sensors. It is
achieved by using the procedure of the likelihood function minimization, based on the Kalman
filter and the stochastic approximation procedure. The application technique of the least-
squares method to a state space model in order to determine initial values of unknown
parameters which are necessary to identify the state space model by maximum likelihood
method is created. This algorithm was used for state space identification of the model of lateral-
directional dynamics of small 6-seat aircraft.
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Introduction. Identification of flight dynamics models on the basis of the flight test data in
the presence of measurement noise and systematic errors (biases of the measuring systems and
instruments) is a real problem especially for the small aircraft. For this class of aircraft it is
impossible to apply the effective vibration insulation of the sensors. Its absence causes a high level
of the measurement noise. Moreover, a lot of technical, economic and design restrictions exclude
applying expensive sensors which have high accuracy; meanwhile the cheap and less precise ones
have essential biases (systematic errors) in their output signals. Measurement noises and biases
result the distorted parameter estimation of the dynamic model. Therefore, a minimization of the
harmful effects of these factors at the first stage of the data processing is a very important task.

Parametrical identification methods of dynamics model presented by transfer functions or
autoregression moving average equations are considered in many papers, e. g. in [1]. Since the
aerodynamic characteristics of an aircraft are not the parameters of transfer functions and
autoregression moving average equations but they are the stability and controllability derivatives of
linearized state space model, it is better to perform the identification of flight dynamics models in
state space.

Problem Statement. The structure of an aircraft dynamic model and records of input control
signals u(t) and responses y(t) of the aircraft to them are the input data for the parametrical
identification of flight dynamics model.

Mathematical model of the lateral and longitudinal motions of an aircraft is described by the
linearized state space equations with constant parameters:

X = AX+Bu;

_ (1)
y=Cx+Du+b+¢,

where A, x are the nxn state matrix and the nx1 state vector respectively; B, u are the nxm
control matrix and the mx1 control vector respectively; y is the 1x1 measurement vector; C is the
I x n observation matrix; D is the I xm matrix of the direct transfer from control input to output; b is
the vector which elements are the systematic errors; & is the vector of Gaussian noise of measurement.
Having the records of input control signals and responses of the aircraft to them that contain
useful component, measurement noise and systematic errors, it is necessary not only to determine a

vector of parameters 6 of model (1), i. e. elements of matrices A, B, C, D, but also the biases of
Sensors.

Problem Solution. As measurements of the state vector components are contaminated with the
considerable noises it is desirable to use the maximum likelihood method (MLM) for the parametric
identification of the aircraft state space model [2; 3]. This method results in the estimations, unbiased
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asymptotically, with the minimal variance in the case of Gaussian noise by selection of parametrical
model which corresponds to the maximal value of likelihood function, that is

6 = arg max P(y|8).
66
where 6,6 are the vectors of unknown parameters and their estimation respectively; P(y|9) is the

likelihood function. For convenience it is expedient not to find the maximum of likelihood function,
but the minimum of the negative logarithm of this function [2], that is

J(8)=~InP(y[6) = 0,5{% (Vi =¥ Ry (v; =¥) + NIn | R, [ +IN In(2m)}, @)

where V. is the i-the estimation of the output vector of aircraft model; (yi —f/i) Is the i-the vector
of innovations; |R;,| is the Frobenius norm of the innovation matrix; N is the number of

measurement points (it depends on the length of realization); | is the size of the output vector ¥ (it

depends on the number of measured values).
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identification algorithm
Since it is necessary to estimate the parameters of an aircraft model (1) in the presence of
measurement noise and sensor biases, in [4] it is proposed to extend the state space of this model in
a way of inclusion in it augmented (“dummy”) variables [4] which are the biases of sensors:
b, =[by, by, ..., b,I".

S

PIA |«

After extension of state space the input vector u,,, the state vector X,, and the output
(measurement) vector y,,, are the following:
Uy, =u=[u, ..., u.T,
Xeo =[X BT =[X, ..., %, by, ..., BT, (3)
Yoo =Y =Y - YT

As a result of the extension (3) the system (1) has 2u zero eigenvalues of Hamiltonian matrix

associated with the Riccati equation for the observer. Solution of the optimum observer synthesis
problem in the presence of singular Hamiltonian matrix having high order multiple zero eigenvalues
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is practically impossible. In this case it is appropriate to use the randomization approach to the
“dummy” variables [4] after which Hamiltonian matrix with non-singular covariance matrix of the
process noise is also non-singular and the optimum observer synthesis problem is solved with the
help of standard algorithm based on the stationary Kalman filtration.

The application of stationary Kalman filtration algorithm to the “dummy” variables results
their coarse estimation since the state and observation matrices determined by optimization
procedure are still unobservable. For the improvement of the estimation of sensor biases it is
possible to take advantage of their constancy [5] (during one flight at least). It is known, that
algorithms of the stochastic approximation give asymptotically unbiased estimation of a mean value
[6], therefore, it is expedient to use this property for the estimation of constant biases. Application
of algorithms of the stochastic approximation helps to improve the state space estimation of the
model (1) the some component of which are unknown sensor biases. Advantages of such combined
state space estimation are noted in particular in [6]. In this connection it is proposed to use
additional correction for state variables that concern to bias b, . This correction is determined by

algorithm of accelerated Kesten stochastic approximation [7]:
Xogy (1 +2) = Ko (1+2) + 7(0) Yoy = Vg ) » 4)

where X (i+1) is the estimation of the state variable, which concerns to j -the bias on i -the step,
received after Kalman filtering; y(i) is the gain of the stochastic approximation on i -the step.

It is necessary to notice, that, if the estimation process is optimal, then the innovation vector
(y-V),, in the steady-state mode should have properties of the white noise. If the correlation

functions of all estimations of biases tend to delta-functions, it corroborates the efficiency of
estimation procedure of sensor biases.

To determine the initial values of vector of the unknown parameters which are necessary to start
the minimization procedure of negative logarithm of the maximum likelihood function (2) it is better
to use the least-squares method (LSM) [8]. Before using LSM it is necessary to filter measurement
noises with the help of digital physical unrealizable symmetrical non-recursive filter [8].

To apply the well-known LSM to the state space model (1) it is necessary to present it in the
form of autoregression moving average

Y =00 +E (5)

where Y is the vector of output signals of model; @ is the identifier matrix; E is the error vector.
For model (5) as a result of identification the vector of unknown parameters 0 is determined by the
formula [1]:

Bqy =(PTD) @'Y,
Generally, when the number of state variables is n, the number of input control signals is m, the
number of measured signals is I, the vector Y is the following:
Y =[y,(0) v(i+2) - yi(N) y,(0) - v, (N) =y (@) v+ -y (NI
The size of vector Y in this case is (N —i+1)x1. The vector of unknown parameters has the
size [(n+m)x1 and it is

eLSM :[an a, 4, b11 b12 blm @y Gt Gy, bnl bn2 bnm]T'
The identifier matrix for model (1) can be presented in the form of a block-diagonal matrix [8]
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®, O 0
o 0

® = S’ (6)
O O ®,

where blocks @, look like: @, =[X, U],

(-1 xi-1) - x(-D) TR0 BRI () BT ()
o | KO %O x® | WG+D) uGi+D) - u, 4D |
WN-D %(N-D) = x(N-1) BN w0 )

O is the zero matrix which size is (N—i+1)x(n+m). The size of the identifier matrix (6) is
I(N=i+D)xI(n+m).

Results of State Space Identification of Lateral Motion Model. The approach cited above
has been applied to the solution of the state space identification problem of the lateral motion of the
de Havilland aircraft DHC-2 “Beaver” which “benchmark” model is known [9]. Describing the

lateral motion model of this aircraft by the state space equations (1) the state vector x; the input
vector u and the measurement vector y are the following:

x=[p, r,vl';  u=[Ba & y=[p t a, p T,

where p, r are roll and yaw rates, rad/s; v is lateral velocity, m/s; da, or are aileron and rudder
deflections, rad; p, r are roll and yaw accelerations, rad/s; a, is lateral acceleration, m/s?. The
state space matrices for this model are the following:

_Lp Lr Lv L&x LSI’

L L L L, L, N, N, N, N, N,
A=|N, N, N |; B=|N, Ng|; C=|Y, Y, Y, | D=|Y, Y, |
Yoo, Y., 1 0 0 0 0
0 1 0 0 0|

where Lys N

The vector of unknown parameters looks like

0=[L, L, L, N, N, N, Y,Y,Y,L

p! r?

are roll and yaw moment derivatives; Y, are lateral force derivatives.

L

dr !

N&x’ N8r Y&x’ YSr]T

oL !

and the vector of sensor biases b, =[b,,, b, b, I

Results of state space identification of the vector of unknown parameters 6 by least squared
and maximum likelihood methods are presented in Table 1.

Relative error of parameter estimation for the aircraft lateral motion is less then 5 % for twelve
parameters and it is less than 25 % for other three. That coincides with the result of identifiability.

The values of sensor biases, estimated with the help of accelerated Kesten stochastic
approximation algorithm (4), go to the initial values of these biases (Table 2). It corroborates the
efficiency of application of this algorithm.
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Results of Parametrical Identification

Table 1

Parameter N\(;g?lijr;al EStiTglt\(/ald by EStil\rzitl(\a/ld by Relati\(% error,
L,.s™ -5,820 -5,1641 -5,6372 3,14
L,s™t 1,782 1,523 1,7620 1,12
L,, rad/(m-s?) -0,097 -0,0597 -0,0805 17,03
Ly, S -16,434 -13,999 -16,315 0,72
Ly, 87 0,434 0,1965 0,4317 0,54
Ny, s™ -0,665 -0,5404 -0,6590 0,90
N,,s* -0,712 -0,7289 -0,7026 1,31
N,, rad/(m-s®) 0,0084 -0,0244 0,0105 24,60
N;,, s -0,428 -0,0968 -0,4443 3,82
N;,,s7 -2,824 -2,6483 -2,8026 0,76
Yy, mi(rad-s) -0,278 -0,3623 -0,3261 17,31
Y., m/(rad -s) 1,410 1,3460 1,3983 0,83
Y, s -0,180 -0,1229 -0,1792 0,44
Yy, mi(rad -s%) -0,447 -0.3498 -0.4250 4,91
Y, , mi(rad -s?) 2,657 2,2479 2,5665 3,41

Table 2

Results of sensor biases estimation

Bias Nominal value Estimated value | Relative error, %
by, rad/s 0,0050 0,0047 6,00
b, , rad/s 0,0050 0,0049 2,00
bSay , m/s? 0,0850 0,0871 2,47

The processes of estimation of sensor biases (b,

Conclusions. The most effective method of
the state space identification of flight dynamics
models is the mim. The state space identification
algorithm of an aircraft on the basis of this method is
based on application of the optimal kalman observer
of aircraft dynamics and optimization procedure
together with the logarithmic likelihood function as
a cost function. It is offered to use the “dummy”
variable randomization, if the hamiltonian matrix
that is associated riccati equation, is singular; to use
the accelerated Kesten stochastic approximation
algorithm for more precise definition of sensor
biases. The technique of application of LSM to a
state space model to determine the initial values
of unknown parameters, which are necessary to

and b,, ) are presented in fig. 2.
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Fig. 2. The processes of sensor biases estimation
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identify the state space model by MLM together with Kalman filter, is created. The efficiency of the
proposed technique has been verified on the “benchmark™ model of an aircraft lateral motion.
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A. M. Knina

ANropuTm ifeHTUiKaLil B MpocTopi CTaHIB MOAeNi NiTanbHOro anapara

CTaTTiO MPUCBAYEHO PO3P006Li anropuTMy ifeHTUGIKaLil B NPOCTOPI CTaHiB MOAENen AUHaMIKM
NoNbOTY 3a HasABHOCTI LUYMiB BMMIpPOBaHb Ta 3MilleHb AaTtuukiB. Llifib po3pobneHoro anroputmy
iAeHTMqr)iKaui'l' nonarae He TiNbKN B OLI,iHPOBaHHi MOXiAHNX CTIAKOCTI Ta KepyBaHHs NiTalbHOro
anapara, ane /i B OL,iHIOBaHHI 3MilLieHb AaTuKMKIB. Lie LOCAraeTbCA LWSXOM BUKOPUCTaHHS npoveaypu
MiHIMi3aLiT PYHKLIT MakCMMa/ibHOT NPpaBonoAi6HOCTI, 3aCHOBaHOI Ha (inbTpi KanmaHa i npou,e,u,ypl
CTOXaCTUYHOI anpokcumauii. byno 3anponoHoBaHO MPoLeAypY 3aCTOCyBaHHA METOAY HalMEHLLNX
KBafpaTiB 4O MOAeni B NPOCTOpi CTaHiB A1 BW3HAYEHHS MOYATKOBMX 3HAYeHb HEBILOMMX
napameTpiB, HeoOXigHWUX AN ifeHTUiKayil Mogeni B NpOCTOpPi CTaHiB METOAOM MaKCUMa/bHOT
npaegonoAibHOCTi. 3anNpornoHOBaHUI anropuT™ 6y/0 3aCTOCOBAHO A0 MOAeNi 6IYHOr0 pyXy NErkoro
LLIECTUMICHOTO JliTaka.

A. H. Knuna

ANropnT™M NAeHTUMOMKaLNN B NPOCTPAHCTBE COCTOAHMNIA MOLENN NeTaTe/IbHOro annapara
Crartba noceslleHa pa3paboTKe anroputma MAeHTUMUKALUMN B MPOCTPAHCTBE COCTOSHWUIA Mogenei
AMHAMVKM 101eTa NPU HA/IMYUK LWYMOB N3MEPEHUS 1 CMeLLeHMIn faTtumkoB. Llenb paspaboTaHHOro
anroputTMa MAEHTU(UKaLMM COCTOUT HEe TONbKO B OLEHMBAaHWM MPOU3BOAHLIX YCTOMYMBOCTU W
yrpaB/ieHNs neTaTe/lbHOro arnapara, HO U B OLEHUBaHUM CMELLEHWNIA [aTUYMKOB. DTO AOCTUraeTcs
MyTeEM MCMONb30BaHMA MpoUeaypbl MUHMMM3ALUMWU  (DYHKUMU MaKCMMaibHOrO MpaBAonofobus,
OCHOBaHHON Ha (punbTpe KanmaHa v npoueaype CTOXaCTUYECKO annpokcumMauuu. MpegnoxkeHa
npouesypa NpYMeHeHns MeToAa HaMMeHbLUMX KBafpaToB K MOAE/N B MPOCTPaHCTBE COCTOSHWIA ANs
onpefenieHnst Ha4ya/lbHbIX 3HAYEHWI HEM3BECTHbIX MapameTpoB, HEOOXOAMMBIX /1 UAEHTU(MKaLUN
MOLENN B MPOCTPaHCTBE COCTOSHUIA METOLOM MaKCMMasilbHOro npasaonofobus. MpeanoxeHHbIN
anropuTM Ob1/T MPUMEHEH K MOZLEN 60KOBOI0 [BVKEHMS NIErKOro LWeCTUMECTHOrO camosieTa.
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