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This paper focuses on nonlinear dynamics, optimization and control of longitudinal and lateral
dynamics of flight vehicles. For advanced airframes and multiple control surfaces, it is
impossible to linearize and decouple longitudinal and lateral dynamics. Nonlinear analysis and
control are performed. For a given enabling airframe and control schemes, a robust design
concept is researched. A consistent design is applied with a minimum level of simplifications
and assumptions. Our findings are verified and demonstrated for practical problems. The
reported design enables near-real-time implementation due to conceptual consistency,
robustness, computational efficiency and algorithmic effectiveness. The proposed conceptis
effective in design of flight control and management systems.
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Introduction. In advanced fix- and variable-geometry wing aircraft and flight vehicles,
various airframes and control solutions are deployed. For different aircraft classes (bombers, strike
and multirole fighters, ground-attack aircraft and other), the mission-specific objectives are distinct.
The overall goal is to guarantee a combat air superiority, supremacy and dominance. There is a
broad spectrum of performance requirements and capability specifications which should be
achieved.Advanced airframes, control surfaces and gas turbines must guarantee a broad range of
conflicting specifications in expanded flight envelopes. The common specifications are agility,
maneuverability, controllability, stability, speed,range, climb and turn rates, as well as other flying
and handling qualities. These qualities and quantitative performance metrics must be achieved
despite a low-signature airframe and control surfaces shaping, limits on most advanced structural
materials, etc. Unconventional control, thrust-vectoring and other  schemes may enable
performance and capabilities of flight vehicles.

For conventional airframes, linear control theory was applied. The flight dynamics of
advanced flight vehicles is open-loop unstable, and, described by highly-nonlinear differential
equations. The longitudinal and lateral flight dynamics cannot be simplified or decoupled in
expanded flight envelopes. One may be unable to apply linear control schemes which were used for
simple airframes. Linear designs may suit partial flight envelopes and could lead to erroneous
results in realistic flight envelopes under various engagement scenarios and flight conditions.
Aircraft must ensure optimal achievable mission-specific flying and handling capabilities which are
assessed by agility, controllability, maneuverability, stability and other performance characteristics,
estimates and measures.

Aircraft’s performance and capabilities can be enabled by flight control systems. This task
implies multi-objective optimization and control for a given airframe and control schemes.
Consistent, coherent and cohesive methods must be applied with a minimum level of
simplifications and assumptions, despite potential design complexity.

Open-loop unstable flight wvehicle dynamics is highly nonlinear. Model reductions,
linearization, decoupling and decentralization cannot be applied in expanded flight envelopes. We
apply and use a nonlinear model to design tracking control laws using the state transformation
method. The control laws ensure near-optimal longitudinal and lateral dynamics. The flight- and
mission-relevant performance functionals can be minimized using the design-specific performance
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integrands. We examine the role of nonlinearities, control bounds and uncertainties. Near-real-time
design, adaptation and reconfiguration can be ensured. These features are of a particular importance
to potentially accommodate control surface or airframe damages and failures. Adaptation and
reconfiguration can be achieved in realistic flight scenarios and close-in high-g engagements if the
vehicle remains to be controllable and stabiliazable. We examine descriptive flight conditions,
envelopes and flight scenarios. Nonlinear simulations and data-intensive analysis are performed.
Our findings and quantitative analyses are reported in details substantiating our design concept.

Nonlinear aircraft dynamics. Using the first principles of mechanics, applying linear and
angular momentum, the nonlinear equations of motion are found within aircraft principal axes [1-3].
The rigid-body governing nonlinear equations for a twin-tail fighter are derived by using
conventional notations and variables. The state and control variables are

X*=[vaqoppréy] and u= 3,311 8rr0r 881"

where Vv is the forward velocity; a is the angle-of-attack; g, p, and r are the pitch, roll and yaw rates;
B, ¢ and  are the pitch, roll and yaw angles; {3 is the sideslip angle; dur, and oy, are the deflections
of the right and left horizontal stabilizers; drr and dg_ are the deflections of the right and left flaps;
dc is the canard deflection; dr is the rudder deflection.

The nonlinear equations of motion commonly used are[1 — 3]

x¥(t) = AX*+F(x*®)+Bu, u,,, <U<u_., (1)

X%GXCRC,UEUCRm,U:{UGRm‘U <u<u__,u_ >0,u_. <0}

min — max ' ~'max ' ¥ min

The system nonlinearities are mapped by F(x*). The system variables evolve within the
flight envelope defined by X. There are mechanical limits on the deflection of control surfaces. The
states and controls evolve in X and U.

The parameters significantly vary in the flight envelope. There are bounded uncertainties and
perturbations of different origins. Using bounded

— parameter uncertainties p (parameter variations, unmodeled fast dynamics, unsteady
aerodynamics, etc.);

— perturbations d (parameter perturbations, failures, damages, disturbances, etc.), one obtains
the following system description

x¥(t) = At, p)x¥ + F(t,x>**,d)+ B(t, pu,x* e X, ueU, peP,deD. (2)

The parameters can be identified in a near-real-time [4 — 6]. Correspondingly, in the analysis
and design, we may use

X¥(t) = A¥x¥ + F(x*,d) + B¥u+ Z(t, p,d), (3)

<u<u

x¥eX,uelU, u, < o PEP, deD, A¥ e R” B e R™™.

Some parameters are slow varying. However, the fast changes in the adverse rapidly-
changing environments and flight conditions must be also considered. We consistently represent
nonlinearities, parameter variations and uncertainties, thereby coherently solving design problems.

Lemma 1. A function f(t, X) is bounded within a sector [a,b] in R, xR® — dimensional space,
and, f(t, X) evolves in [a, b] if for f(-):R, xR® — R®, there exist real a,b € R(a<b), such that

f(t,00=0, VteR_,
and, [f(t,x)-ax] [bx— f (t,x)]>0, Vte R, ,VxeR",

The conditions of Lemma 1 are always guaranteed for realistic aircraft nonlinearities in
x¥®*eX, uelU,pePanddeD.
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State Transformation Method: Tracking Control. To ensure the specified performance and
capabilities, closed-loop flight systems should be reconfigurable to guarantee real-time or near-real-
time reconfigurability and adaptability [4; 5]. We design control laws, examine closed-loop system
stability and study robustness under the bounded uncertainties p e P and perturbations deD.

Our goals are to: (i) Design practical and implementable tracking control laws; (ii) Develop a
coherent design concept which will ensure a cohesive solution of nonlinear optimization problem
using nonlinear equations of motion and minimizing nonquadratic functionals.

The objectiveis to develop a control procedure which may enable near-real-time
reconfiguration and adaptation ensuring:

— Robustness to parameter variations;

— Disturbance attenuation;

— Stability despite failures or damages if the aircraft remains controllable and stabiliazable
under these failures or damages in the considered flight envelope.

1. Tracking Control of Linear Systems. The tracking control problem is solved for linear
systems by designing the proportional-integral control laws using the state transformation method [7].

The output and tracking error equations are given as

y(t) = Hx>*(t), e(t) = Nr(t) - y(t) = Nr (t) - Hx>*(t) , (4)

where eeECR®, reRcR’, yeYcR”, NeR"™.
To enable the stable evolution of the tracking error, we define

&(t) = — Al .e- HAYX® — HB™y, (5)

where A_ e R™ and I, e R”® are the diagonal and identity matrices.
For linear systems F(x*",d)=0. From (3), we have

X (t) = AX” + Bu+ Z(t, p,d), y(t) = Hx™(t), (6)

We use the results of Lemma 1. Using the expanded state vector
x=[x¥¢]", if Z(t, p,d) =0, one finds

X(t):{xﬁ/s(t)}:{ AT 0 HXST+{ B~ }u+{o}r’:Ax+Bu+{o}r'. (7
é(t) -HA>™ Al || e -HB>® N N

Determine the evolution of the control function as
u=-Al u+l,yv, (8)

where A, e R™™ and I, e R™" are the diagonal and identity matrices.

The space transformation method implies the use of the state vectors zand v. We define these
vectors as

z=[x u]T,v:u+u. 9)

Using zand v, one obtains the system model as

'(t){A B}{O} AZ+BY, Y= Hi” (10)
7(t) = Z+ v=Az+B,v, y=Hx".
0 _AJIU AJIU

We minimize the quadratic functional

tf

1t/ T
J =§j(z Qz+V' Gy, (12)

L
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where Q, e R“™™ "Q >0 and G, e R™™, G > 0.

Problem Formulation: Linear Systems. Minimize the quadratic functional (11) subject to
(10), and, derive the control law for linear system (6).
We apply the Hamilton-Jacobi concept. From

T

H= %(ZTQZZ"'VTGZV)_'_ al (Azz+ BZV)’ (12)

oz

the first-order necessary condition for optimality %—H =0 gives
Z

v

v=-G,B] —. (13)
0z
The solution of the Hamilton-Jacobi equation
N 1. VAN 1(ovVY . oV
——==zQz+| — z-—-|— | BG, B — 14
8t2QZ (aszk 2(@2)”262 (14)
is satisfied by the continuous differentiable quadratic function
V(2) = % 'Kz, K e REmxe+m), (15)
From (14) and (15), the equation for the positive-definite matrix K is found to be
~K=KA + AK-KBG,'BIK +Q,, K(t,) =K. (16)
From (13) and (15), recalling z=|x u]T, the control function is
X
v=-G,'B,Kz=-G,'B K LJ 17)
From (9), we have
0] [K, KL
ut) =-G,'B, Kz—1,u :—Gzl[ } { H 21}{ }—AJIUU =
] | K, K, |lu (18)
=—G,'K,x—(G, 'K, = Al Ju= K x+K,u.
Using (7), one finds
u=B*(x(t)- A)=(B"B) B (X(t)- AX). (19)

Thus, we obtain

U(t) = K, x+ K u= K, x+K,, (B"B) BT (x(t) - Ax) =

- [Kfl ~K,,(B'B)" BTA} x()+K,,(B'B) BTx(t)= (20)

= ( K= KF:LA) X(t) + Ky X(t) = Ko X(1) + Ky X().
From (20), a proportional-integral tracking control law with state feedback is found to be

XSYS

u(t) = KeX(t) — KXo + [ K x(n)dt+uy, x= e | (21)

2. Tracking Control of Nonlinear Systems

For nonlinear systems (1) and (3), applying the design procedure reported, one obtains the
following control function
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v:—Gz‘lBIZ—V, V(=Y V", i=12,.. (22)
z

The derived (22) yields proportional-integral control law u(t). The solution of the Hamilton-
Jacobi functional differential equations must be found by using the nonquadratic positive-definite
return function V(2) [4; 8]. For example,

V(z):%zTKlz+%(zTKzz)(zTKzz)+... (23)

To avoid complexity, an alternative solution is derived.
For nonlinear systems (1) and (3), using the state transformation vectors zand v, one obtains
A B 0
z(t) = z+F(2)+ V=
0 -Aly Aly (24)
=Az+F(2)+B,yv, y=Hx> z(t,) =1z,
We use the following nonquadratic functional
oV’
0z

tf
J :%j(zTQZz— F(z)+vTszjdt. (25)

)

Problem Formulation: Nonlinear Systems.

Minimize the nonquadratic functional (25) subject to (24), and, derive the control law for the
nonlinear system (3).

The proposed nonquadratic functional (25) yields the functional equation (14) which is
satisfied by the quadratic Lyapunov function (15). The control law is given by (21).

3. Tracking Control of Nonlinear Uncertain Systems

The parameter uncertainties, perturbations and disturbances were used in the equations of
motion (2) and (3). One may obtain AZ(p, d) and BLp, d) in (7) and (24). The norm of evolutions of
the bounded uncertainties peP and perturbations de D, given as =(t, p, d), is bounded. That is,

I=(t, p, d)i<p(t, x), (26)

where p():R xR, >R, is the continuous Lebesgue measurable function. This fact was

formulated by Lemma 1.
Under uncertainties and perturbation, we obtain

| B F@+2 4| O Ve Az F(2)4E +B 27
z()_{o _Ablu}u (Z)JMZ{AU'JV_AZZJF (9+E,+Byv. (27)

Consider the closed-loop system (22) — (27). The state variable and tracking error vectors
evolve in XE(X,,E,,U,RY,P,D)c R°xR".

The functional (25) must be positive-definite. That is, J>0, Vxe X, VueU, VreR
VpeP, Vd e X, Vte[t,,).

The admissible domain of robust stability and tracking &

S.(8)={ecR":g e E;xe X(X,,U,RY,P,D), reR yeY, peP, deD, te[t, )

le®)] < pe(t.[l&l)+p. (Ir]) +p, (Iy])+8. =0, Vee E(E,,RY,P,D), Vte [to,oo)} c R"

is found using the criteria imposed on the Lyapunov function
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puf[ X< po el <V (. x,€) < +p5 ||+ s e
dv(t, x, ) (28)
—a = PslXl-pslel.
where  p.():R xR, —>R,, is the KL-function; p,():R,, >R, ps():R,; >R,
and p,():R,, - R, arethe K-functions [8].

Theorem. For nonlinear systems (3), the proportional-integral tracking control law (21) is
derived by minimizing nonquadratic functional (25) subject the system dynamics. The robust
tracking, stability and disturbance attenuation in XE are guaranteed if XE < S for given initial
conditions (X, € X, and &, € E;), control bounds ueU , references r € R, uncertainties pe P and

perturbations d e D. All solutions of the closed-loop system x():[t,,0) — R® and evolutions
e():[t,,0) - R" are robustly bounded if (28) are guaranteed. The convergence of the tracking
error vector e(-) :[t,,) — R to S(8) is guaranteed if XE = S.

Design of Tracking Control Laws. Consider a twin-tail super-maneuverable multirole
fighter aircraft. Using the governing equations of motion (3), nonlinearities and matrices of

coefficients for an unbalanced and asymmetric aircraft at Mach number 0,5 and altitude 5000 m
were derived in [4 — 10]. In particular

0
—pcosatanB—rsinatan

1
E[(IZ—IX)pr—IXZpZHXZrZ]
gcosp—rsind
psino —r cosa
F(x*)= (29)
L [1xz (1x =1y +1)ap+ (11, =15 =12 ar |
lez_lxz
1
o1 | 2 [(Ii_lxlv"'liz)qp_lxz(lx_|Y+|z)qr}
x'z 7 Ixz

gtanOsin¢$+r tanOcos¢
qcos ™ @sin+rcos™ Ocosd

[ -0,016 8,4 -09 -96 -15 -0,27 -0,086 0 -1]
-0,003 -1,2 1 0 0,08 0,062 0,009 -1
-0,0001 39 0,85 0 0,017 0,0038 0,04 O
0 0 1 0 0 0 0 0
A¥»®= -0,003 015 0,02 0,001 -056 013 -091 O
-0,00001 0,717 0,03 0,01 -48 -35 0,22 O
0,00001 -0,94 0,06 0,006 9,2 -0,028 -0,51 O
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

O O O O O o o o
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(012 012 -0,38 -038 0 0 ]
0,16 -0,16 -0,270 -0,270 0,45 0
95 -95 25 -25 08 0
0 0 0 0 0 0
B*=|0,019 -0,019 -0,001 0,001 0,42 -0,053
2,9 29 31 31 073 0,92
31 31 0,78 -078 061 -0,45
0 0 0 0 0 0
0 0 0 0 0 0

Ix = 21983 kg:m?, |y = 154248 kg-m?, 1, = 186515 kg-m® and Ixz = 2407 kg-m?. The
mechanical limits on the deflections of control surfaces are accounted. In particular, |dyg, On| < 0,5
rad, [drr, OrL| < 0,4 rad, |dc|< 0,6 rad and |dg| < 0,5 rad.

4. Tracking Control Law: Linearized Differential Equations. Tracking control laws are
designed for the linearized model (7). We let Ae=1 and Ay = I. To demonstrate the concept, we first
design control laws for decoupled longitudinal and lateral models.

4.1. Longitudinal Model

Decoupling gives the governing equation (3) with matrices

-0,0l6 84 09 -9,6 0,12 0,12
55 _ -0,003 -1,2 1 0 5 _ -0,16 -0,16 '
-0,0001 39 -0,85 0 | -9,5 -95
0 0 1 0 0 0

The control law (21) is derived using the weighting coefficients a1 = 0z2 = 0s3 = Qu4 =
= Q5= 1x10", Qg6 = Oz 7= 1x10°and G,= 1x10°1, | e R®?. In (21), the matrices Kg; and Ky, are
-0,046 0,061 3,63 0 O -0,0013 0,204 127 1,83 -2109
-0,046 0,061 3,63 0 O F21-0,0013 0,204 127 1,83 -2109|

F1—

For a closed-loop system, the evolutions of the pitch angle 0 for different 6, are reported in fig. 1.

1= EER
nZp : ! 04
0.k freened a2
il - t u]
A2F
i Fips E ..
: A5 % z i iR
s A8 ] ,
i i ..L_ P | Li . -1 i_ll_ i | |L-'_'_| i i l
E " -'.lI =0 1] Plt] [ 1] EEI' [n1] a 1] a E 1] i_l.' =0 EN m = 1] o0 10
Time [sec] Time [sec]
a b
Fig. 1. Evolution of the output 6: (&) — 6¢= 0,5 rad; (b) — 6.s= 1 rad
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4.2. Lateral Model

Matrices AY* and BY® are found from (29). The control law (21) is derived assigning Q1 =
= Op2= 083= Qua = Os5= 1, Ose = 1x10°% Q7= 1x10°% Qms = Gwo= Qo1 = 1x10°and G, = |,
| e R*®. We found the following matrices

-173 3218 6366 0 0 O O 7752 11473 -1088 -0,21 -0,68 -4,6 37266
Ke,=| 173 3218 6366 0 O 0 0|, K ,=|-7752 -11473 1088 0,21 0,68 4,6 -37266]|.
-1105 1085 43104 0 0 O O 12010 40835 15867 0,96 -0,29 109 -1604

Figures 2 document the roll and yaw angles ¢ and (s for the closed-loop system for different
references ¢, and Yrer.
e

| =

i

01
0EFy -
04
0

e s LSRN | e e
106 i B
0 e e s et e S aak I I e
L T e v T S T TR TR T S T T TR
Time [sec] Time [sec]
a b

Fig. 2. Evolutions of the outputs ¢ and §: (a) ¢, = 0,1 and Yrer=— 0,1 rad; (b) ¢, = 0,2
and Y, =—-0,2 rad
4.3. Augmented Longitudinal and Lateral Dynamics
The linear equations of motion are given as (7). The weighting coefficients of diagonal
matrices Q,and G, are assigned using G = 1/ Zimax and gsii = 1/ Vimax. Let 011 = 02 = Oz 3 = Opas =
= Os5= G5 = 07 = s = G009 =1, G010 = Gura1 = 110", Gro.11 = 1¥10™, Gz 13 = Oua1a = Gurar =
= 1x10°% Ous15= Oue.16 = Gusis = 1x10° and G,=1001, | e R®®, g, = 100. The control law (21) is
designed. Figures 3 report evolutions of the outputs if r = [Brer, .o » Urer]'. The simulation results
illustrate that the desired Euler angles are achieved.

Il — — s e T T T T T g1s
(ols -] ;

Cos

L @
L4 4
0.1 = -

LB LB
<m : tmy 045

| O S e e - N —— r ; 04 - - - L . : - = . 1 L —— ; N : T 1

o 20 41 B & 100 120 140 B0 B0 20 0 0 L B 1] 100 120 10 160 180 200 a 2 40 =] B 100 120 140 160 180 200
Time [sec] Time [sec] Time [sec]
a b c

Fig. 3. Evolutions of outputs 6, ¢ and Y for r = [6rer, ¢, » Wre] s (@) — 1 = [0,05 0,025 - 0,1] rad;
(b) —r =[0,1 0,05-0,05]" rad; (c) —r = [0,2 0,075-0,1]" rad
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4.4. Nonlinear Fighter Model

The tracking control law (21) is designed. The matrix K and feedback coefficients are found.
Figures 4 report the evolutions of the outputs for a nonlinear fighter model with saturations on
deflections of control surfaces. Good dynamic performance and tracking is achieved for different
references.

ST lal T8 | o e N O 7 ]
= i ace— - e PN PO !
LEE e e |"_ 1 rl 1] e 1

aME [ | I o — I.ur—u-—-

|

st s i
c\_— e - -

:
F
e
e
L

————— = an -y 1 s '}
CTOE T R T R T TR g W o 1w W 4 m m

O T a D MEED
Time [2ec) Tirre [sec] Tine [sec)

a b c

Fig. 4. Evolutions of outputs 8, ¢ and  for r = [Bre, .o , Wrell - (@) —r = [0,05 0,025 - 0,1]"rad;
(b) -r =[0,1 0,05-0,05]" rad; (c) - r = [0,2 0,075-0,1]" rad
The robustness to uncertainties and parameter variations (including variations of the inertia
moment) is examined in the operating envelope XE. The robustness and stability are verified using
the admissibility concept by applying the necessary and sufficient conditions as formulated by
Theorem. The conditions (28) imposed on Lyapunov function are met. The positive-definiteness of
performance functional (25) is examined for admissible reR in the operating envelope with peP

and deD. The closed-loop system ensure robustness and stability. We study the evolutions and
positive definiteness of

t
J =%tj;(zTQZz—zTKF(z)+vTGZv)dt. (30)

The fighter performance and capabilities are evaluated in a realistic operating envelope XE.
Figures 5 illustrate the evolution of %I(ZTQZZ+VTGZV)dt, j(zT KF(z))dt and a total functional J

(30). It is evident that J > 0 in the evolution set XE (Xo, Eo, U, R, Y, P, D). The XE depends on the
initial conditions, references, disturbances, etc. Robustness and stability of a closed-loop system
may be guaranteed in the expanded XE despite of uncertainties, perturbations, etc.

LR gy -
A J-"' .-.J.--' z
" -~
J L o
r-
J
bt Wil i
-~ A
_Jr‘ ___F,.-' “--.___.-""'.
._'__4— e

Time [5ec] i Time :":III o - Time [=et]

a b c

Fig. 5. Evolutions of the performance functional J: () — r = [0,05 0,025 — 0,1]" rad;
(b) r =[0,1 0,05 - 0,05]"rad; (c) r =[0,2 0,07 —0,1]"rad
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5. Accommodation of Failures. We examine the abilities of a closed-loop system to
accommodate some failures and damages of control surfaces and airframe. Our results demonstrate
that the aircraft may be stabilized and controlled: (i) In some operating envelopes XE; (ii) Under
some failures. In general, aircraft may become unstable and uncontrollable. Due to distinct failures,
damages and flight scenarios, it is very difficult to coherently define operating envelopes XE for
which the condition XECS: is guaranteed. The evolutions of states and outputs can be unbounded.
Under some peP and deD, which correspond to particular damages and flight envelopes, it is
impossible to find stabilizing control laws which may not exist. One may reconfigure control law
(21) in near-real-time.

For the failed flaps scenario, assume that the damaged flaps are positioned as 0rr = 0F = 0.
The system nonlinearities and control constraints are considered. The control law (21) is
redesigned. The evolution of the outputs are documented in fig. 6 if r = [6,, 0, 0]".

We perform numerical studies and simulations to substantiate the design concept in XE for
other failures. It is found that near-real-time reconfiguration can be achieved because the
identification takes ~0,0073 sec, while, the control law redesign requires ~0,02 sec. Optimizing
numerical algorithms, using the initial values, utilizing advanced processing platforms, near-real-

time adaptation can be ensured.
o o e (i o

N T (. i
ifiTIS f H .
0 i i 2 0.
T e e R e S e e e
Time [sec) Time [sec]
a b
Figure 6. Evolutions of 8, ¢ and y for flaps failure, r = [Brer, ¢, | Wre]

(a) — Linear system, r = [0,1 0 0]"rad; (b) — Nonlinear system, r = [0,05 0 0] "rad

Conclusions. The overall objective was to develop, demonstrate and substantiate robust,
practical, computationally effective and numerically efficient design methods for closed-loop
systems. We designed proportional-integral tracking control laws for flight vehicles by using
Hamilton-Jacobi concept and Lyapunov stability theory. The space transformation method was
applied. Near-real-time control law redesign, performed periodically within allowable time, and
controller reconfiguration may ensure adaptation, controllability and stability even under some
failures and damages. Enabled maneuverability, increased agility, enhanced controllability, stability
and robustness, as well as improved flying and handling qualities were achieved by using the
proposed design scheme and derived control algorithms. The results were verified through
nonlinear simulations in expanded operating envelopes. Our findings are applicable to various
flight and aerospace systems including a new generation of fighter aircraft, unmanned aerial
vehicles, etc. This paper developed, applied and verified new control schemes and methods
providing new inroads and solutions for flight control system design and optimization.
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ABHiw M. C. YoxaH, C. E. NMiweBckii

AHasi3 HeNIHIMHOT AMHaMIKK Cy4acHMX NiTaKiB Ha OCHOBI METOAY NEePeTBOPEHHS CTaHy
PO3rNSHYTO MWUTaHHS HENiHINHOT AMHaMiKK, ONTMMI3alil Ta KepyBaHHS MO3A0BXHIMU i GiYHUMM
pyxamu NiTa/lbHUX anapaTis. [na BLOCKOHaNEHUX MiaHepiB Npu HasBHOCTI 6araTboX Kepyroumx
NMOBEPXOHb HEMOXX/IMBO JliHeapu3yBaTh i PO34INNTY MO3LOBXHIO i OiYHY AMHaMiKy. BUKOHaHO
HeNiHIRHWIA aHani3 cUCTeMU KepyBaHHA. [ns NPUIAHATOrO nyaHepa i CXeM KepyBaHHS 4OC/IAXEHO
KOHUEMNuito  pobacTHOrO  MPOEKTYBaHHA.  Y3ro[pkeHe TPOEKTYBaHHA  3aCTOCOBYETbCA 3
MIHIMa/IbHUMMW CMPOLLEHHAMM | NpunyLleHHAMK. MepeBipeHo BUCHOBKW i MPOAEMOHCTPOBaHO Mif
yac BMPILUEHHSA MPaKTUYHMX 3aBAaHb. 3anpornoHOBaHWA METOL MPOEKTYBaHHSA MOXHA 34iACHUTH
MaiiXe B peasibHOMY 4aci, 3aBASAKN KOHLENTYanbHili NOCNiA0BHOCTI, po6aCTHOCTI, 064MCNIOBasIbHIl
Ta aITOPUTMIYHIA ePEeKTMBHOCTI. 3anporoHoBaHa KOHLUENLiA efeKkTMBHa Y pasi MPOeKTyBaHHS
CUCTEM aBTOMATUYHOIO JTITAKOBOZIHHSA Ta KepyBaHHS MO/IbOTOM.

AHuW M. C. YoxaH, C. 3. JInwweBcKunin

AHann3  HeNNHENHONW  AUHAMUKK  COBPEMEHHbIX CaMO/IeTOB Ha OCHOBe MeTofa
npeo6pasoBaHNs COCTOSTHUSA

PaccMOTpeHbl BOMPOCH! HENMHEWHON AUHAMWKW, ONTUMU3aLMM U YNpPaBNeHUs MPOLO/bHBIMUA 1
OOKOBbIMU [BMXKEHUAMMW JfleTaTeNlbHbIX annapaTtoB. [11 YCOBEPLUEHCTBOBaHHbLIX M/IaHEPOB MNpU
H/IMYMM  MHOTUX  YNPaBMstOWMX MOBEPXHOCTE HEBO3MOXHO JIMHeapu30BaTb W pas3fenntb
NPOLONbHYKO U 60KOBYIO AMHAMUKY. BbINOMHEH HEMIMHENHBIA aHaIM3 CUCTEMbI yripaBieHus. s
MPUHATOrO NJiaHepa 1 CXeM YyrpaefeHus uccnefoBaHa KOHUenums pobacTHOro NpoeKTMPOBaHWS.
CornacoBaHHOoe  MNPOEKTUpPOBaHWE  MPUMEHSAETCA C  MUHUM&IbHBIMW  YNPOLLEHUAMU U
JonyLueHnamun. IpoBepeHbl BbIBOAbLI U NMPOLEMOHCTPMPOBaHbI MPU PeLLeHNM MPaKTUYeCKUX 3ajad.
MpeanoXeHHbIN METOZ, NMPOEKTUPOBaHNSA MOXET ObITb OCYLLECTB/IEH MOYTW B pealbHOM BpPEMEHMN,
bnarogaps  KOHUEeNTyaslbHOM  MOCNefoBaTeNlbHOCTM,  PO6AaCTHOCTW,  BbIYUC/UTENILHOW U
IrOPUTMUYECKON  3th(heKTUBHOCTU. TpefnoxeHHas KOHUenuusa 3heKTMBHA MpU  MPOEKTU-
POBaHUM CUCTEM aBTOMATMYECKOTO CaMO/IETOBOXKAEHWSA U YrPaBIeHNs MOJIETOM.



