ISSN 1990-5548 Enexmponixa ma cucmemu ynpaeininns. 2012. No2(32) 73

UDC 681.51(045)
Younis Shareef Daoud, Dr.

NEW APPROARCH FOR THE SOLUTION OF QUADROTOR STABILIZATION TASK

The requirements for the functional possibilities of unmanned air vehicles are determined. It is
marked the necessity of their control autonomy. It is offered to increase the place of unmanned
air vehicles autonomy system of control, shortening here the loads that the pilot on the ground
is tested. The approach for the statement task solution based on the use of mathematical model
of quadrotor and quality quadratic criterion is considered.
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Introduction. In recent years, there are an increasing amount of researches on automatic
flying of intelligent systems. Those systems are generally called as flying robots or unmanned air
vehicle (UAV). The uninhabited air vehicles are defined as aircraft without the onboard presence of
pilots [1]. Today, lots of different UAVs model are available, and those structures are named with
respect to rotor number or physical appearance. Those systems are widely used for military
applications, search and rescue operations, agricultural disinfection, filming sports events or movies
from almost any angle and transporting or controlling equipment.

In this project; a VTOL (Vertical Take Off and Landing) flying robot which has a Quadrotor
system type is desired to design.

Statement of the task. The structure scheme of a quadrotor system dynamic model is
represented on fig. 1.

Fig. 1. Structure scheme of a quadrotor system dynamic model

The dynamics of the four rotors are relatively much faster than the main system and thus
neglected in our case. The generalized coordinates of the rotorcraft are ¢ = (x, y, z, v, 0, ¢), where



74 ISSN 1990-5548 Enexmponixa ma cucmemu ynpaegiinnsa. 2012. Noe2(32)

Dynamic model of the quadrotor in terms of position (x, y, z) and rotation (¢, 0, y) is written
as [2]:
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and t1=|1, |€R’ are the control inputs, (x, y, z) represents the relative position of the center of

Ty

mass of the quadrotor with respect to an inertial frame J, and (y, 0, @) are the three Fuler angles
representing the orientation of the rotorcraft, namely yaw-pitch-roll of the vehicle. I, . are body
inertia, J, is propeller/rotor inertia and Q = ®; + w4 — ®; — w3, / is the body inertia matrix, g is the
acceleration due to gravity, u = fi +f> + f3 + s and f; -s are described as f, = k.o, where k; are
positive constants and ; are the angular speed of the motor i.

Thus, the system is the form of an under actuated system with six outputs and four inputs.

It’s applied dynamic inversion to the system given by (1) and (2) to achieve station-keeping
tracking control for the position outputs (x, y, z, V).

It’s selected the convenient output vector y; = (z, ¢, 0, y) which makes the dynamic inverse
easy to find. Dynamic inversion now yields effectively an inner control loop that feedback
linearizes the system from the control u = (u, 1, 7o, Ty) to the output x = (z, ¢, 0, y).

After linearization the equations (1), (2) can be represented as

%= Ax+Bu 3)

with x(¢) € R" the state, u(¢) € R™ the control input.
The equation of measurement is given by

v =Cx,
where y(¢) € R” the measured output.
The controls will be output feedbacks of the form
u=-Ky, Q)]

where K 1s an mx p matrix of constant feedback coefficients to be determined by the design
procedure.
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The objective of state regulation for the quad-rotor is to drive any initial condition error to
zero, thus guaranteeing stability. This may be achieved by selecting the control input u(¢) to

minimize a quadratic cost or performance index (PI) of the type
. Loy 1 T
J—EJ.O (x Ox+u Ru)dt, &)

where QO and R are symmetric positive semidefinite weighting matrices. Positive semidefiniteness
of a square matrix M (denoted M >0) is equivalent to all its eigenvalues being nonnegative, and

also to the requirement that the quadratic form x'Mx be nonnegative for all vectors x. Therefore,
the definiteness assumptions on Q and R guarantee that J is nonnegative and lead to a sensible
minimization problem. This quadratic P/ is a vector version of an integral-squared P/ of the sort
used in classical control [3].

Formulate the linear quadratic regulation (LQR) problem with output feedback as find the
feedback coefficient matrix K in the control input (4) that minimizes the value of the quadratic P/

(5) [4].

By substituting the control (4) into (3) the closed-loop system equations are found to be
x=(A-BKC)x=A.x. (6)

The PI may be expressed in terms of K as
. 1= 7 T T
J_EIO x" (Q+C"K"RKC)xdt. (7)

The design problem is now to select the gain K so that J isminimized subject to the dynamical
constraint (6).

This dynamical optimization problem may be converted into an equivalent static one that is
easier to solve as follows. Suppose that wecan find a constant, symmetric, positive-semidefinite
matrix P so that

%(xTPx) =—x"(Q+C"K"RKC)x. (8)
Then J may be written as
J= %xT (0)Px(0)— % limx" (£) Px(¢).

Assuming that the closed-loop system is asymptotically stable so that x(¢) vanishes with time,
this becomes

J = %xT (0)Px(0). 9)
If P satisfies (8), we may use (6) to see that
—x' (Q + CTKTRKC) x= %(xTPx) =x"Px+x"Px=x" (ACTP +PA, )x.

Since this must hold for all initial conditions, and hence for all state trajectories x(¢), we may
write

=A'P+PA +C"K'RKC+Q=0. 10
g (4 c

If K and Q are given and P is to be solved for, this is called a Lyapunov equation.
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It 1s now necessary to use this result to compute the gain K that minimizes the PI. By using
the trace identity
tr(AB) = tr(BA)

for any compatibly dimensioned matrices A and B (with the trace of a matrix the sum of its
diagonal elements), we may write (9) as

J:%tr(PX) (11)
where the n x n symmetric matrix X is defined by
X= %x(O)xT (0).

It is now clear that the problem of selecting K to minimize (7) subject to the dynamical
constraint (6) on the states is equivalent to the algebraic problem of selecting K to minimize (11)
subject to the constraint (10) on the auxiliary matrix P.

To solve this modified problem, we use the Lagrange multiplier approach [2] to modify the
problem yet again. Thus adjoin the constraint to the PI by defining the Hamiltonian

N = tr(PX) + tr(gS) (12)

with § a symmetric n x n matrix of Lagrange multipliers which still needs to be determined. Then
our constrained optimization problem is equivalent to the simpler problem of minimizing (12)
without constraints. To accomplish this we need only set the partial derivatives of N with respect
to all the independent variables P, S, and K equal to zero. Using the facts that for any compatibly
dimensioned matrices 4, B, and C and any scalar y,

itr(ABC) =A'C"
OB

» [a]
oB" |oB]’
the necessary conditions for the solution of the LQR problem with output feedback are given by

0= Z-? =g=A"P+ P4, +C"K"RKC +Q;

and

Oza—N=AcS+SACT +X;
oS

0:%2—;=RKCSCT -B'PSC™. (13)

The first two of these are Lyapunov equations and the third is an equation for the gain K. If R
is positive definite (1. e., all eigenvalues greater than zero, which implies nonsingularity; denoted
R > 0) and CSC" is nonsingular, then (13) may be solved for X to obtain

K=R"'B'PSC"(CSC")™".

The results of simulations are presented on figure.
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Fig. 2. Results of simulations: a — (I —x3; 2 —x; 3 —ys; 4 —x; 5 —z3; 6 — 2);
b—(I-x3—x;2-y;—y;3—z3—2);c—(I—X;;2—X3;3—-y;;4—-y;5—-2,;6—2)

Conclusion. Mathematical model of the system will be obtained, some simulations will be
applied and characteristics of the system will be observed.
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Jlxonu Wapud dayn

Hosrlii moaxoa k pemennio 3aaaun cradunuzanun QUAD-poropa

Ompenenensl TpeOoBaHUS K (YHKIIMOHAIBHBIM BO3MOXHOCTSIM OCCHUJIOTHBIX JIETaTEIbHBIX
anmnapaTroB, CpeAu KOTOPbIX OTMEYEHa HEOOXOJUMOCTh AaBTOHOMHOCTHM UX YIPaBJICHUS.
[Ipennaraercss MOBBICUTH POJIb ABTOHOMHOM CHCTEMBl YNpaBleHUS OECIMIOTHBIX JIETAaTEebHbIX
anmnapaToB, COKpAaTUB MPU 3TOM 3arpy3Ku, KOTOpPbIE HUCIBITHIBAET MHJIOT, HAXOIALIUIICS HA 3eMIIE.
PaccMoTpeH moAXox K pPELIEHUIO TIIOCTaBJIEHHOM 3aJaud Ha OCHOBE HCIOJIb30BAHUSA
MatemaTunueckoi Mmosen QUAD-poTopa u KBapaTUYHOIO KpUTEPUS KauecTBa.

Jlxoni Ulapid Hdayn

HoBwuii miaxia 1o BupimenHsi 3apaanns cradimizauii QUAD-poropa

BusnaueHo BUMOTY 10 (PYHKI[IOHAIbHHUX MOKJIMBOCTEW OE3MUIOTHUX JIITAIBHUX arapariB, cepen
AKX BIIMIYEHO HEOOXITHICTH aBTOHOMHOCTI iX KepyBaHHA. [IpomoHyeTbCs NIABUIIUTH POJIb
aBTOHOMHO1 CHCTEMM KepyBaHHS O€3MUIOTHUX JITAJIbHUX amnapaTiB, CKOPOTUBIIM IPH LbOMY
HaBaHTaXKEHHsI, K1 BUIIPOOOBYE MUIOT, 110 nepedyBae Ha 3eMill. PO3risHyTO MiAXiA 10 BUPIMIEHHS
[IOCTABJICHOTO 3aBJaHHS Ha OCHOBI BHUKOpUCTaHHA MaremarnyHoi wmogzeni QUAD-poropa 1
KBaJIPATUYHOT'O KPUTEPIFO SAKOCTI.



