58 ISSN 1990-5548 Electronics and Control Systems 2016. N 4(50): 58-62

UDC 621.38:629.735.015:004.93 (045)

S. S. Tovkach

CUDA-BASED TECHNOLOGY FOR IMPROVING THE EFFICIENCY
OF THE AIRCRAFT MOTION

Automation and Energy Management Department, National Aviation University, Kyiv, Ukraine
E-mail: ss.tovkach@gmail.com

Abstract—Considered the method of parallel computing based on CUDA-architecture with detecting large
and small scale details of turbulence flow to adapt flight dynamics for motion control of the aircraft. De-
fined the acceleration value of the parallel implementation relatively to series and the integral
effectiveness of parallel computing that allows to use the NVIDIA Tegra graphics processors to
increase the processing power of massively parallel calculations.

Index terms—Graphics processing unit; multi-threaded; flight dynamics; adaptive motion control; wavelet

analysis; turbulence flow, parallel computing.

I. INTRODUCTION

The aircraft motion often deals with the control of
flight dynamics. It can be considered a branch of
system dynamics in which the system studies is a
flight high-speed vehicle [1]. The field of flight dy-
namics is divided into following aspects:

— performance — the short time scales of response
are ignored, and the forces are assumed to be in qua-
si-static equilibrium, as a result, flight speeds, rate of
climb, maximum range, and time aloft is investigated,;

— stability and control — the short- and interme-
diate-time response of the attitude and velocity of the
vehicle is considered;

— navigation and guidance — the control inputs
required to achieve a particular trajectory are consi-
dered.

In these notes can be focused on the issues of
performance, stability and control. These aspects of
the dynamics can be treated somewhat independently
the types of responses are related, respectively, to the
performance and stability of the vehicle and to the
ability of the pilot to control its motion.

The most useful instrument to support these di-
rections with high efficiency the motion control has
been parallel computing. Massively parallel com-
puters are routinely used to simulate large-scale
engineering problems, including fluid flows [2].

The Message Passing Interface (MPI) has per-
mitted communication among heterogeneous com-
puters connected through a fast communication
network using a grid or local interconnects. Advances
in hardware such as multicore processors have further
increased the speed of each compute node in the
network. This has permitted multiplicative increases
in the computing speed without the need to make
similar gains in the individual chip speed.

Another paradigm in scientific computing that is
just beginning to emerge is the use of multi-threaded

Graphics Processing Units (GPUs), which act as
co-processors for Central Processing Units (CPUs)
(Fig. 1). In recent years, motivated by the need for
fast graphics and games, Graphics Processing Units
have become quite powerful, while also becoming
significantly cheaper than CPUs of equivalent com-
puting power. GPUs with the capability to conduct
several dozen PFLOPS (1 PFLOPS = 1015 computing
operations per second) have been developed in the
last few years.

GPU
Thousands of cores

CPU
Multiple cores

Fig. 1. Paradigm to use of multi-threaded GPU

Simultaneously a new programming language
called CUDA (Compute Unified Device Architec-
ture) created by NVIDIA has appeared. CUDA is a
programming model based on the C programming
language, making implementation of numerical al-
gorithms on GPUs easier.

Brandvik and Pullan presented results for 2D and
3D Euler solvers implemented on the GPU. They
used the Euler solvers to simulate turbine flows [3].

Elsen used a GPU to simulate the inviscid flow in
simple and complex geometries by numerically
solving the compressible Euler equations. Compared
to the CPU, they achieved GPU speed-ups of over 40
times for simple geometries and 20 times for complex
geometries [4].

So, the goal of the article is to analyze and find the
way for improve the efficiency of the aircraft motion
based on CUDA-technology.

©National Aviation University, 2016
http://ecs.in.ua

S.S. Tovkach CUDA-Based Technology for Improving the Efficiency of the Aircraft Motion 59

II. WAVELET ANALYSIS FOR PARALLEL COMPUTING

Modern perspective method to detect where the
turbulence will take place, separate the large and small
scale details, as a result, reducing the drag component
for improving the motion control of aircraft based on
CUDA-technology is wavelet analysis [5].

The main equations for turbulent flow are given by:

ou N 1

—+(u-V)u=v-Vu——Vp+ f, 1
Py (u-V) 0 p+rf (1)
where u, p, p is the velocity, density and pressure

of the flow, v is the viscosity, f'is the resultant force of
gravity and the external forces [5].

The turbulent velocity field i = (4,7,) and the

energy spectrum é=(1/s,k) at a scale s had been
considered by the discrete wavelet transform:
. 1

X. —X. =Y. Z. —Z.
uiz uj(p ; j:yl yj: . - > (2)
\/E(psum J s s s

where ¢ is the mother wavelet, ¢, is determined
by

Py =20 3)

The number of around cell is constant for use grid
or pixel and the turbulent force from the energy é(k)
and the wavelet function y(x) is

£ =W(p, ! Aé (k) y(x,), “4)

with the control parameter W to change the scale of
turbulence.

III. CUDA ARCHITECTURE

Until recently, video accelerators were considered
only as specialized devices designed only for
processing graphics. In the early 21th century there
was a use of graphic technology processor for general
computing (GPGPU). This was made possible by the
addition of programmable shader units and higher
arithmetic precision raster containers that can be used
stream processors to non visual computing.

Although this technology has a limited range of
applications, GPU is the device which stepped ahead
of the CPU in terms of increasing the total processing
power, and the total number of kernels.

In fact, the main task of the GPU is reduced to
mathematical calculations based on simple algo-
rithms for receiving predictable input data, and close
by ideology RISC CPU architecture.

Graphic technology processor for general com-
puting technology is implemented by OpenCL and
CUDA. OpenCL is the common standard program-

ming interface of three-dimensional graphics. The
basic principle of OpenGL is to provide a set of
vector graphics primitives in the form of points, lines
and polygons, followed by mathematical processing
of the data and the construction of a raster image on
the screen and/or in the memory. Vector transforma-
tion and rasterization executed by graphic pipeline

(Fig. 2).

Graphics application

Y

Vertex array

> Shader o

Transform and
Lighting

v
[

Y

Clipping non visible
planes
homogeneous
coordinate
transformation
Display output

A 4

Scanline rendering

Multitexturing Pixel shader

Pixel set of tests

v

Frame buffer

Fig. 2. Scheme of the graphic pipeline

CUDA is the architecture of parallel computing on
the GPU company nVidia, supporting GPGPU
technology for general-purpose computing (GeForce,
Quadro, Tesla, Tegra, Fermi) [6]. Currently, there
CUDA SDK [6], [7], which allows programmers to
realize in the C programming language, C ++, Fortran
and other algorithms feasible on the nVidia GPUs,
and include special features in the text of the program
in C. CUDA gives for developers the discretion to
organize access to a set of instructions the graphics
accelerator and control its memory, to organize on it
difficult parallel computing.

The CUDA API is based on the C language [6],
[7]. The graphics processor organizes hardware mul-
tithreading, which allows use of all GPU resources.

CUDA computing architecture also can be classi-
fied as the SIMT (Single Instruction Multiple
Thread), where the input data divide into multiple

60

ISSN 1990-5548 Electronics and Control Systems 2016. N 4(50): 58-62

smaller sub-tasks each of which is handled by its
thread. The threads are executed in parallel on the
compute modules, which are used as a set of
streaming multi-processors.

Multiprocessor is a SIMT-multicore processor,
allowing in any given time to carry out all the nuclei
of only one instructions, and each stream processor
executes the instructions on his own data. To execute
on the GPU task is divided programmer on multiple
threads, which are combined into blocks, and the
blocks in turn are combined into a mesh. The pro-
cedure performed by each of the streams is called the
kernel (kernel). Computing resources are distributed
between threads by the CUDA driver. Logically, the
device can be represented as a set of multiprocessors
with CUDA driver. Schematically CUDA perfor-
mance of the program shown in Fig. 3.

Device
Grid 1
| Kernel 1 I >
Block Block Block
0,0 (1,0) (2,0
, \
Block , Block |)| Block
01y an oy @n
4 \
/ 1
7z 7 \
’ / \ \
7 / L
7 " 7 T
7/ |Grid2 Vo
7/ / \
’ v
% // ‘\ \\
| Kerel 2 I < > | |/ v
/ ’ \ h
\
, / [\
4 / \
/ L]
Block (1,1) / \
/ '
/ \
/ \
7 T
/ \
Thread | Thread | Thread | Thread | Thread | Thread
0,0 [(1,0 (2,0) 3,0 (4,0) (5,0)\
! \
/ ‘\
Thre/ad Thread | Thread | Thread | Thread | Thread
@n | an | en | en | @y 6Ny
/ \
/ ‘\
, Thread | Thread | Thread | Thread | Thread | Thread |\
S0 | | 22 | B2 | 42 | 52 ||
/
/ \

Fig. 3. CUDA architecture

The host is considered as part of the performance
program based on the CPU, and device is the video
card, or computing device that supports CUDA.

The flows and blocks are identified by codes,
which determines the data part that performed the
particular thread.

The maximum codes that can be used for the
block flows are (512, 512, 64) the number of threads
in the block should not exceed the maximum dimen-
sions 512. The maximum grid dimensions are
(65535, 65535, 1), is actually two-dimensional net-
work of streams.

CUDA-performance unit is the warp. Warp size is
32 flow, due to the delay the 4 cycles (latency) of the
performance one instruction on multiprocessor. Only
in relation to warp can be talked about performance
of the parallel threads, no other assumptions can not
be made. However, this does not mean that warps
performed on multiprocessor in series. The warps
performance can be parallel, for example, in the case
where a warp is waiting for data from the global
memory other warps can be performed at this time.

The interaction between threads can be within
block. Data exchange is carried out through a shared
(shared) memory common to all threads in the block.
Timing of threads can be done by calling the special
synchronization functions.

Another key point architecture CUDA is the easy
scalability. Once the code is written will run on all
devices supporting CUDA. For development and
debugging code to run on the GPU can use ordinary
video cards that cost accessible to everyone. And
when the product is ready — it has run on powerful
Tesla or clusters built on the GPU architecture, the
cost of which is lower than the cost of well known
computing systems.

The most important issues are the investigation of
acceleration depending on the total computational
complexity and estimation the resulting acceleration
in the organization of parallel computing [7]. These
figures reflect the feasibility of using parallel com-
puting. It can be considered that the sequential pro-
gram runs on a single core of multi-core the CPU
without special parallel computing tools between the
kernels.

For systems the same type with technical pa-
rameters, the acceleration value of the parallel im-
plementation relatively to series is usually defined as
follows:

)

where ¢, is the time performance on a single pro-
cessor, f, is the time performance of a parallel pro-

gram on k computers.

The use of CUDA architecture for parallel com-
puting can be considered the estimation of accelera-
tion as relation the operating time of the parallel
algorithm to the computing power (performance) of a
particular model the GPU device.

The integral effectiveness of parallel computing
defined as the relation the acceleration to the number
of cores (CUDA cores):

a
E=T (©)

S.S. Tovkach CUDA-Based Technology for Improving the Efficiency of the Aircraft Motion 61

where £ is the number of the GPU device cores.

The computational efficiency virtually indepen-
dent of the dimension of the task; an increase the
performance parallel computers is slightly reduced
the integral efficiency.

Table I illustrates the main information for
computing CPU and GPGPU CUDA devices [6], [7].

Analysis of this data shows that it is more advan-
tageous to use the NVIDIA graphics processors to
increase the processing power.

IV. RESULTS

The efficiency of the aircraft motion based on
CUDA-technology can be characterized by wavelet
analysis turbulence modeling. The results were made
on a computer equipped with the Intel Core i7 CPU
and the NVIDIA Tegra GPU. The most of algorithm
was implemented on GPU by using NVIDIA CUDA
and used the Morlet as the mother wavelet.

K.

Figure 4 show the result of turbulence flow. The
computation time for the simulation was about
10 msec per frame. The calculation of the energy
spectrum and the wavelet turbulence requires about
75% of the simulation.

TABLE I

MAIN CHARACTERISTICS OF COMPUTING DEVICES

Perfor- Energy Cost-effecti-
Model mance, consump- veness
GFLOPS tion, W

Intel Core 23.46 55 0.0073
2 Duo

Intel Core i7 99.20 95 0.0164
Tegra 1500 225 0.0247
Tesla 3520 225 0.0282

- ,

(a)

(b)

Fig. 4. Flow without turbulence (a), and with turbulence (b)

V. CONCLUSION

CUDA-based method to simulate turbulent flow
by wavelet analysis for improving the efficiency of
the aircraft motion has been proposed. It makes better
to reduce the drag component and optimize consti-
tuting of flight dynamics — performance, stability and
control, navigation and guidance.

CUDA-architecture allows to use NVIDIA Tegra
GPU embodiment in a real-time as a controlling part
of adaptive control systems with high-resolution
predictions. Moreover, the development of parallel
computing with use the wavelet analysis can perform
calculations on grids of large number of elements and
small computation time.

In fact, this technology has become usefull for
non-stationary processes analysis and extends the
direction of investigation the object with the hybr-
id-morphology properties to act as a distributed sen-

sitive system, which can reduce the power consump-
tion and competiveness of the aircraft.

REFERENCES

[1] David A. Caughey, “Introduction to Aircraft Stability
and Control.” Sibley School of Mechanical & Aero-
space Engineering Cornell University. New York.
2011, 147 p.

[2] Nairita Pal, Prasad Perlekar, Anupam Gupta, and Rahul
Pandit “Binary-Fluid Turbulence: Signatures of Mul-
tifractal Droplet Dynamics and Dissipation Reduc-
tion” Indian Institute of Science. Bangalore, India.
2016, pp. 1-11.

[3] T. Brandvik, and G. Pullan, “Acceleration of a 3D
Euler solver using commodity graphics hardware,”
46th AIAA Aerospace Sciences Meeting and Exhibit,
2008.

[4] E. Elsen, P. LeGresley, and E. Darve, “Large
calculation of the flow over a hypersonic vehicle using
a GPU,” Journal of Computational Physics, vol. 227,
no. 24, 2008, pp. 10148-10161.

62 ISSN 1990-5548 Electronics and Control Systems 2016. N 4(50): 58-62

[5] M. Farge, N.K.R. Kevlahan, V. Perrier, “Turbulence [7] Andrew Kerr, Gregory Diamos, Sudhakar Yalaman-

analysis, modelling and computing using wavelets” chili, “A Characterization and Analysis of PTX Ker-
Laboratoire de Meteorologie Dynamique, Paris Cedex nels.” Georgia Institute of Technology, Atlanta,
5, 2009, pp. 1-66. Georgia, 2013, pp. 1-10.

[6] Parallel computing CUDA. [Online]. Available:
http://www.nvidia.com.ua/object/cuda-parallel-comp Received October 19, 2016.

uting-ru.html (in Russian).

Tovkach Serhii. Candidate of Science (Engineering). Associate Professor.

Automation and Energy Management Department, National Aviation University, Kyiv, Ukraine.
Research interests: Automatic control systems and diagnostics systems of aircraft using wavelet analysis.
Publications: 40.

E-mail: ss.tovkach@gmail.com

C. C. ToBkau. Texnousoria CUDA s nigBunieHHs1 e)eKTUBHOCTI pyXy NOBITPSIHOTO CyAHA

PosrmsinyTo Meton nmapanensHux odoumciens Ha ocHoBi CUDA-apXiTekTypy 3 BUSHAYECHHSIM BEJIMKHX 1 MaJMX JeTanei
TypOyJIEHTHOrO MOTOKY JJIsl aJanTanii AMHaMiK1 MOJIbOTY il Yac KEPYBaHHS PYXOM MOBITPSHOro CyaHa. BuzHaueHo
3HAYEHHs TPUCKOPEHHS MapajeibHOi peaizallii BiJHOCHO IOCIIJOBHOI Ta IHTErpalibHy €(EeKTHUBHICTH MapajelbHUX
00YHCIICHB, 10 JO3BOJISIE BUKOPHCTOBYBATH Tpadiuni mporecopu NVIDIA Tegra mis 301IbIIeHHS 00YHCITIOBAIBHOT
MIOTYKHOCTI MaCHBHO-TIIapaJIEIbHUX PO3PAXYHKIB.

Karwudosi ciioBa: rpadiunmii nporecop; 0araTonoToyHicTh; JUHAMIKA MONBOTY; aAalTHBHA CUCTEMa KepyBaHHS PYXOM;
BeliBIIeT-aHaNi3; TypOYJIEHTHICTh IOTOKY, apajieibHi OOUUCICHHS.

Tokau Cepriii CepriiioBuy. Kanauaart texHiuHux HayK. JJoneHT.

Kadenpa aBromatusarii Ta eneproMmeHepKkMenTy, HarionansHuil aBianiiinuid yHiBepceuter, KuiB, Ykpaina.
HampaBneHHsI HayKOBOi [iSUIHOCTI: aBTOMAaTH30BaHI CHCTEMH KEpYBaHHS Ta JIarHOCTYBaHHS CHCTEM IOBITPSHOTO
CyJIHa 3 BUKOPUCTaHHSIM BEWBJIET-aHAII3Y.

Kinpkicts myomikarii: 40.

E-mail: ss.tovkach@gmail.com

C. C. Tokau. Texnosorng CUDA nis nopeimieHns e)eKTUBHOCTH ABMKEHUS BO3AYIIHOIO CyIHA

Paccmotpen MeTon mapasurenbHbIX BhIMHCIEHHH, ocHOoBaHHBIH Ha CUDA-apxuTekType, ¢ 0OOHapy:KeHHeM OOJNBIINX U
MEIIKUX JieTalleil TypOyJIeHTHOrO MOTOKa JUIsl aJalTaliy AWHAMUKY TI0JIeTa NPU yIpaBJICHUH JBW)KEHHEM CaMoJeTa.
OmnpeneneHo 3HaYeHUE YCKOPEHUs IMapaiielbHON pealu3allid OTHOCHTENIBHO IOCIEOBATENbHON M WHTErpajbHast
3¢ PEKTUBHOCTH NapaJUIENbHBIX BEIYUCICHHH, YTO TIO3BOJISIET UCIIONB30BaTh rpaduueckue npoueccopsl NVIDIA Tegra
JUTSL yBEJTMUEHHSI BBIYUCIUTEIbHOW MOIITHOCTH MacCUBHO-IIAPAJIENIBHBIX PaCYEeTOB.

KarwueBsbie cioBa: rpaduueckuii nmpoleccop; MHOTOIIOTOYHOCTh; JTUHAMUKA TIOJIETa; aJalTHBHOE YIIPaBJICHUE JBH-
JKEHHEM; BEHBJIET-aHAIIN3; IIOTOK TYPOYJIIEHTHOCTH, NapajuIe/IbHbIE BEIYMCIICHHSI.

Toskau Cepreii CepreeBuy. Kanauaat TexHUUeCKUX HayK. JlOLEeHT.

Kadenpa aBTomaTuzanuu u sHepromenepkMeHTa, HalmonanbpHbIN aBHalBIOHHBINH YHUBEpcUTeT, Kues, Ykpauna.
HampaBnenue HaydHOW HeSITENbHOCTH: aBTOMATU3UPOBAaHHBIE CHCTEMBI YIIPABJICHHS W JTUATHOCTUPOBAHUS CHUCTEM
BO3/IYLIIHOTO CY/IHA C MCIIOJIb30BaHUEM BEHBIIET-aHAIH3A.

Konngectro my6nukanuii: 40.

E-mail: ss.tovkach@gmail.com

