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Abstract—The article considers the nonclassical quaternions and pentanions of helf-rotations of solid
body and their application in problems of control and orientation of moving objects. In contrast to classical
rationed Hamiltonian quaternions of complete rotations the nonclassical quaternions of helf-rotations may
be null, they have variable rates, depending on the angle of Euler finite rotation.
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I. INTRODUCTION

Presently the classic Hamiltonian quaternions of
rotations of solid body (SB) with the parameters of
Euler (Rodrigues—Hamilton) find application in the
tasks of orientation of moving objects. They are
rationed, have a single norm and can not be null [1].

II. PROBLEM STATEMENT

Two types of the relatively new [2], [3], unra-
tioned non-Hamiltonian quaternions of helf-rotations
of SB are examined: U =u, + A, V =v, + A where
uy=1-1, , vy=l+i, ; A =cos(p/2) , A=Ak,
A=sin(p/2); k is the unit vector of Euler axis of
finite rotation (turn) of SB in three-dimensional
vectorial Euclidean space; ¢ is the angle of Euler
finite rotation. Parameter 2, and coordinates 2,
(n=1, 2, 3) of three-dimensional vector A (in con-
nected with SB coordinate orthonormal base) — are
the material classic parameters of Euler (Rodri-
gues—Hamilton) as real numbers [1], [2]. They de-
termine the quaternion of complete rotation
A=k, +L1 with a unit norm ||A||=2; +2° =1, ,
A=A+ AT

Quaternions U, V emerge as a result of multipli-
cation of the unconventional (new) rationed quater-
nions of helf-rotations P=m+p , M=p+m
(m=sin(p/4), p=(cos(p/4)x, p=cos(p/4),
m = (sin(p/4))x ) correspond-dingly by modules
lU|=2m,|V|=2p, (U=U|P,V =|V|M). At that
the rationed quaternions P, M are considered as
material unit vectors in four-dimensional vectorial
Euclidean space.

In contrast to quaternions A unrationed quater-
nions U, ¥V may be null (if ¢=0 and ¢=27n cor-

respondingly), their modules and norms depend on
the angle ¢ . They represent practical interest for the

solving two main problems: determination of SB
orientation and control of SB orientation under con-
dition of providing the shortest turns of SB (for
angles <0 and ¢@>m ) in strapdown inertial
orientation systems (SIOS) and control of orientation
of moving objects [11].

III. SOLUTION OF THE PROBLEM

A. Application of nonclassical quaternions for de-
termination of orientation

To determine the orientation the computer com-
putational algorithms SIOS are used [1]. One-step
algorithms of the third and fourth orders of exactness
with the “scaled” quaternion of the kind 0,5U have

been used, for example, in a scientific and production
association “Khartron” (Kharkov, Ukraine) in the
task of determination of orientation of space vehicle
[3].

Particular practical interest is presented by the
four-step algorithms of the fourth — sixth orders of
exactness [1], providing possibility of recurrent
calculations of quaternions U, V with step H =4h (h —
a permanent and minimum possible step of discreti-
zation the signals of integrating gyroscopes by time
in the computer of SIOS). The article [5] shows that
the four-step algorithms are more efficient when
used in SIOS than the one-step, two-step and
three-step algorithms. The intermediate parameters
of orientation are used in these algorithms [1] —
coordinates ¢, ,, (n=1,2,3) of a smaller vector

.4, characterizing the Euler finite rotation of the

object to smaller angle in a time equal to step H. The
algorithms of calculations of these parameters can be
presented by one generalized four-step algorithm as
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=qy.,t 00,9, +a,0,q,
+a, (sz% +0.,q, ) +a, (Q—2Q—I + Q]‘h):

where g,.,

(pN+4 (1)

=q4,+tq9,+tq,+q, , 49,,9,.9,,9, are
column matrices (1%3), made from the increases of
corresponding angular quasicoordinates-signals of
the gyroscopes formed in a side computer SIOS or
SINS on four sequenced “smaller steps” 4 of the

questioning of gyroscopes; O,,0 ,,0,,0, —
ponding skewsymmetric matrices. Values of per-

corres-

manent coefficients a, (v = 1-4) in the algorithm

(1), determining the concrete form of the examined
examples of the algorithms of the fourth order of
exactness, represented in the Table I. The algorithms
1,2,3,5 are described in the monography [1],
algorithm 4 — in the article [6] (“smoothing”
algorithm of the fourth order, got on the basis of
Tchebyshev polynomials). Algorithm 6 is a new
four-step algorithm (optimal conical on exactness)
[12].

TABLE ]

THE CONSTANT COEFFICIENTS OF FOUR-STEP ALGORITHMS

Number of algorithm
Factors I 3 3 1 5 G
a 0 0 22/45 184/315 —74/45 534/945
a 16/9 0 22/45 112/315 -9/2 486/945
as 0 4/3 22/45 212/315 86/45 414/945
a 0 0 32/45 52/105 0 696/945
Next equations is an example of the recurrent ALY =256xy0, +4096X,,5, —1024x,,,, o
four-step algorithm 6-th order [1]: £9216x,,,, ~9216x,,
1 1
Myis = 5(1 —E(Piw 1920 —— Qg SAG), =—2048x)500, + 8192, 09001 — 20480015 (8)
@ 3Ly, =2048 9
(p j(p N+4 xOOOOO]’ ( )
N+4 N+4> .
322560 where x, .. =h"QI. QP! ; pis the degree

22 1
Pyiga =Gy T [45 90qN+4J(Q ,+0. (g +q,)

+i_§(Q2 (g.,+0.,9,)-0, (C]] + 0 ,q, ))’

=0,1,2,...; i

> "m

step h; i, #1,; i,
)~ () . (J)
Qn _mn > n

matrix o, (¢ ),

+o.tL+i+m=p;
is the time derivatives of the
relating to the time point ¢ ;

o”=0,=0(); o/, is the column matrix
3) cons1st1ng of the coordinates of the absolute angular
R 1 &y velocity of the object ®(7) in a certain basis J.

Ohyia = 7560 kz;l&N*“’ ) In Table II the values of constant of speed of
calculable drift of algorithms are showed for
A, =32, +192x,, +256x,,, (5)  comparison (at the conical vibrations of block of
o gyroscopes SIOS with conditions [6]: corner of
Oh sy =192x50, +768x,45 —2112x;,, ©) nutation — 1 deg., frequency of conical vibrations —
~3712x,, —960x,,, +1344x, ,; 10 Hz, step of calculations — 0,01 s), got Wlthln the
hundredth stakes of percent at a computer design by

the method of parallel account [1, p. 218].

TABLE II

THE CONSTANT VELOCITY OF THE DRIFT COMPUTING OF FOUR-STEP ALGORITHMS

Obtion Number of algorithm
P 1 2 3 4 5 6
The actual order of 4 4 6 6 6 6
accuracy
The drift velocity, deg/h 2.5 1.4 3.9-10" 9.6-10 1.1-107 2.2:10°
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As seen in Table II, algorithm 3 substantially ex-
cels at exactness other algorithms (except for new
algorithm 6) and is, essentially, a conical [7] algo-
rithm (actually of the sixth order of exactness). An
additional analysis showed advantages of algorithm 3
also in speed of operation. Optimal conical algorithm
6 exceeds in exactness even the four-step algorithm
Litton [7], and his calculable complication is equal to
calculable complication of algorithm 4.

Algorithm 3 (as main part of algorithm of calcu-
lations of Rodrigues—Hamilton parameters) is rea-
lized [8, p. 316] in the laser aviation strapdown iner-
tial navigation system SINS-85, serially [9] produced
since 2002 and intended for the use on the air-
planes 11-96-300, Tu-204, Tu-334. Modifications of
the system SINS-85 (SINS-77, SINS-T, SINS SP-1,
SINS SP-2) are used on the airplanes An-70, Tu-95,
Tu-160, Tu-214, Su-35, T-50, Yak-130 [10].

B. Application of nonclassical quaternions for
orientation control

Parameters of quaternions U, V can be effectively
used for the solving the problems of the orientation
control of space vehicle (SV), as a solid body, in the
positive definite quaternion functions of Lyapunov f,
and f, of quadratic kind [2]:

fo=ou +B,(L- A1) +7,([® ),
j(v = (x’vv()z + Bv(7_\" A\)_\‘) + Y»(a) g)ﬂ

where a,,, B,, v. > 0 and o, B,, v, > 0; 4,, 4, are
positive definite symmetric permanent operators;
g =Jo is the vector of kinetic moment SV; J is the

(1)

operator (tensor) of inertia SV; ® is the angular
velocity vector of SV.

To provide the control of the shortest turns of SV
the function £, at up <1, vo>1 (0 <@ <m) or the
function f, at uy> 1, v<1 (m < <2m)is used.

C. Pentanions of helf-rotations

On the basis of rationed A and unrationed U, V
quaternions there turn out the new five-dimensional
vectors of  helf-rotations of a kind

X=X,4, + A+ X, I, , where A is three-dimensional
vector A=A,7, +A,i, + A,i, in the quaternions

A, U, Vi xo, x4 — two any scalar parameters out of
three: uo, vo, Ao; i,..7, are unit vectors of some
five-dimensional orthonormal
Xy,A Ay, A5, x, are coordinates x, (m =

coordinate base;
0,1,2,3,

4) of vector x in this base.
To solve the problems of SB orientation control,
for example, the five-dimensional vector can be used

X, =u,l +A+ v, i, with the formulas of multip-
lying:

uy =u +u" —uul — (A1),

Ty =050 —up) K+ 0,50, —u) X"+ (1-7), (12)

' " ron DALY
Vo =2=vy =V + vy vy — (A A7),

Here 0,50 —u)=Ap, 0,50, —u))=X,, (X'-1")
are scalar product of vectors A’ and A" of the first
and the second rotation.

The systems of kinematic differential equations
for five-dimensional vectors are linear and one of
them looks like, for example, in a scalar-vectorial

record: 24, =(®@-1), 27::0,5(\/0 —u, YO+ AX®;
2%, =—(@1).
Out of five-dimensional vectors x of

helf-rotations (by analogy with quaternions) the
hypercomplex [8] five-dimensional systems — pen-
tanions of SB helf-rotations appear [11]. Any penta-
nion is written down as a hypercomplex number
(without unit vector i ) as X =x,+A, i +A, i +
+Ay I, +X, i, =X, + L+ x,i, , where X, is the scalar part
of pentanion, (A+x,i) is the vector part, x, are
pentanion parameters. The norm |.X|| of pentanion is
determined by the scalar product:

|X]|=GE-%)=x; + - D) +x] .

Pentanions of helf-rotations have a row of ad-
vantages in contrast to classic five—dimensional pa-
rameters of Khopf orientation [11], got from six
direction cosines of SB unit vectors.

IV. CONCLUSIONS

Thus, the possibility of application of parameters
of nonclassical quaternions and pentanions of SB
helf-rotations is shown in the tasks of control and
orientation of moving objects. Unlike the classic
rationed quaternions of rotations the considered
nonclassical quaternions of semirotations can be null
and their modules and norms depend on the corner of
Euler finite rotation of SB. Due to the special prop-
erties the nonclassical quaternions and pentanions of
helf-rotations can be effectively used in the algo-
rithms of the strapdown inertial systems of orienta-
tion and orientation control systems along with the
classic rationed Hamilton quaternions of rotations or
instead of them.

REFERENCES

[1] A.P. Panov, Mathematical foundations of the theory of
inertial orientation. Kyiv, Naukova dumka, 1995,
279 p.



A.P. Panov, S.A. Ponomarenko Nonclassical quaternions and pentanions in problems of inertial orientation

51

(2]

(3]

(4]

(3]

(6]

(7]

A.P. Panov, “On new unnormalized quaternions of
solid body rotation”. Problems of Analytical Me-
chanics and its Applications. vol.26, 1999,
pp. 300-329.

V.A. Demenkov, Y.A.Kuznetsov and A.P. Panov,
“Using reference models of rotation for estimation of
orientation algorithms in unnormalized quaternions of
strapdown navigation systems”. [7th International
Conference on Automatic Control  “Automat-
ics—2010.” Collection of papers. vol. 2. Kharkiv, Na-
tional University of Radio Electronics, 2010, pp.
45-47.

Y. A. Litmanovich and J. Mark, “Progress in the
development of algorithms for SINS in the West and
the East with the materials of the St. Petersburg con-
ference: review of a decade.” X St. Petersburg Inter-
national Conference on Integrated Navigation Sys-
tems. Proc. rep. St. Petersburg. 2003, May 26-28,
pp. 250-260.

A. P. Panov, “Methods of sixth-order accuracy for
calculations of the orientation vector coordinates by
the quasicoordinates.” Cybernetics and Computer
Science, ALLERTON PRESS, New York, 1986.
vol. 69, pp. 47-52.

V. Z. Gusinsky, V. M. Lesyuchevsky and Yu. A.
Litmanovich, Musoff Howard and Schmidt George T.
“A New Procedure for Optimized Strapdown Attitude
Algorithms.” Journal of Guidance, Control and Dy-
namics. 1997, vol. 20, no. 4, pp. 673—680.

J. Mark and D. Tazartes, “Tapered algorithms that
take into account non-ideality of the frequency re-

Panov Anatoly. Doctor of Science (Engineering). Professor.
European Academy of Natural Sciences, Kyiv, Ukraine.

Education: Leningrad Institute of Aviation Instrumentation, 1964.

(8]

(9]

sponse of the output signals of gyroscopes.” Gyros-
copy and navigation. 2000, no. 1 (28), pp. 65-77.

M. V. Sinkov, J. E. Boyarinova and J. A. Kalinowski,
The finite hypercomplex number systems. Funda-
mentals of the theory. Applications. Kyiv: Institute of
Recording Information NAN of Ukraine. 2010, 389 p.

G. 1. Chesnokov and A. M. Golubev, “Strapdown
inertial navigation systems for modern aviation.”
St. Petersburg International Conference on Integrated
Navigation Systems. Proc. rep. St. Petersburg. 2003,
May 26-28, 192 p.

[10]JA. G. Kuznetsov, B.L. Portnov and E.A. Izmailov,

“Development and testing of two classes of aircraft
strapdown inertial navigation systems on the laser
gyro”. Gyroscopy and navigation. 2014. no. 2 (85),
pp. 3-12.

[11]A. P. Panov, S. A. Ponomarenko, and V. V. Tsysarzh,

“Groups and algebras of non-gamiltonian quaternions
of half-rotation in the problems of strapdown inertial
systems.” XXII St. Petersburg International Confe-
rence on Integrated Navigation Systems. Proc. rep. St.
Petersburg. 2015, May 25-27, pp. 257-261.

[12]A. P. Panov and S. A. Ponomarenko, “On the new

non-hamiltonian quaternions of half-rotation and their
application to problems of orientation.” European
journal of natural history, 2016, no. 5, pp. 52-56.
URL: http://world-science.ru/euro/pdf/ 2016/5/15.pdf

Received May 27, 2016.

Research interests: mechanics of rigid body, the theory of strapdown inertial navigation systems.
Publications: more than 110 papers.
E-mail: anatoliy panov@ukr.net

Ponomarenko Sergiy. Candidate of Science (Engineering). Senior Research Fellow.
State Research Institute of Aviation, Kyiv, Ukraine.
Education: Kyiv Military Aviation Engineering Academy, Kyiv.
Research interests: avionics aircraft, remote monitoring systems, complex processing navigation information.
Publications: more than 115 papers.
E-mail: sol @ukr.net

A. II. ITanos, C. O. ITonomapenxo. HeTpanuuiiini kKBaTepHioHH i IeHTaHIOHN B 3aAa4ax iHepuUiaJbHOI opieHTANl
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KaTh BiJl KyTa eHIepoBOro KiHIEBOro 00epTaHHsI.
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