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I. INTRODUCTION

In today's high-speed information systems the
wave nature of the processes in the transmission of
information highways should be taken into account.
Currently, segments of transmission lines with
constant characteristic impedance (scheduled) are
used as models of such highways. This model is
very approximate and takes into account the

generally regular random errors in  the
implementation of continuous nominal wave
impedance irregular and limited class of

perturbations [1]. This model is not applicable to the
analysis of processes in broadband information
highways with variable along the length of the wave
resistance, since the processes in this case are
described by equations of irregular lines [1].

During the technical realization of irregular lines
due to various technical inaccuracies inevitably there
is an error in the reproduction of the desired value of
the wave resistance, which leads to the rejection of
the transmission characteristics of the line set. In
general, this error is a random variable value Fig. 1.
Therefore, the wave resistance is not a deterministic
function, but a random process. In general, the
expectation of this process is different from the
nominal values. Therefore, in the production line
necessary correction process (optimization) in the
implementation of the wave resistance, which
compensates for this difference.
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Fig. 1. Line with a casual wave resistance W(y), W(y)

is the nominal characteristic impedance the geometric
coordinate

In this paper, the stochastic description of
irregular  lines  with  random  distributed
inhomogeneities based on the theory of Markov
processes [3] is given.

II. CONCLUSION OF THE STOCHASTIC EQUATION
FOR THE WAVE RESISTANCE OF THE
INHOMOGENEOUS LINE

It is known [4] that the processes of differential
impedances are determined entirely in non-uniform

. w' . ..
lines N(1) =£, where W is the characteristic
2W (1)

impedance line; 7 is the time of the delay line. From
the expression N(t) follows that all the properties

of the line is defined as the value of the wave
resistance W (t) at this point t, and the rate of
oW (1)

o

By its nature, mistakes in the implementation of
the line conductors are very diverse. For example,
the implementation of coaxial lines available as
unforeseen abrupt changes in diameter of the
conductor (jumps), and quite a slow change in the
coordinate error. When lines are implemented in a
stripline structures, width of strips and dielectric
permittivity vary randomly. Therefore, if the starting

change W'(7) =

!

take random function N = % , the range of change
is within
-0 < N(1) < 0.

Error in the playback function N(7) is a result
of many different unrelated factors. Therefore,
according to limit theorem [3], we can assume that
the error is a normal distribution. The interval error
is determined correlation feature manufacturing
process line and its value is generally much smaller
than the length of a geometric line. For example,
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when grinding conductors correlation interval
defined grain size; striplines when implementing
correlation interval depends on the size of the
microparticles forming the conductive layer, etc. It
follows from the foregoing that the error in the

4

playback function N =;V—W can be approximately

regarded as normal white stationary noise with zero
mean. The last assertion follows from the fact that
the probability of positive and negative error is the
same.

In the future, for the convenience of the
following symbols are used: the random variables
are indicated above “~” sign in - actual geometrical
length, y-axis is directed to the left. For deterministic
mined-functions (for nominal values) denote left
unchanged.

Thus, on the basis of the above, we can write the
stochastic equation for the wave resistance

W'(y)

N =N +A(), NO)= i)

(1

W(y)

where N(y)= 5 is the deterministic function;

W(y) is the random function of the wave resistance,
A (y)=g(MA), )

where A(y) is the normal stationary white noise
with the correlation function

N,
K,(y,»,) 2705(372 =)

and zero expectation m{A}=0, g(y) is the some

function characterizing the statistical properties of
the process of realization of the line, g(y)>0.

From equations (1) and (2) we can find the
characteristic impedance

W (y)=A()X , A(y)= exp{z [ N(y)dy} E

X =W(0)exp {2j‘Al (y)dy} .

Represent a process X
X =exp {2V} , 4)
where

v 1 5
V= { A,()dy +—InTF(0). 5)

From equation (5) it follows that V' is a Markov
process with diffusion coefficient

b(y) =N°gT(y), ©)

and zero drift coefficient [3]. Instead of equation (5)
is often convenient to use a different form of writing

dv

_:A](y):

1 -
V(0)=A, =—In(0),
&0 0) ozn()

where V' (0) =2, is the initial random value.

From equations (3), (4) follows that the statistical
characteristics of the wave resistance

W(y)=A(y)e’” (7)

completely determined by a Markov process V. Let
us turn to the study of the basic properties of the
process.

III. DETERMINATION OF THE DENSITY PROBABILITY
OF THE MARKOV PROCESS V, CONCLUDED
BETWEEN TWO REFLECTIVE BOUNDARIES

The density probability P(v,y) of the Markov
process V(y) satisfies the Fokker—Planck—Kolmo-
gorov [3]. In our case, this equation takes the form

0 1 0
—P(v,y)=—b
o (v,») 5 ) e

2

P, ). ®)

Equation (8) admits separation of variables.
Therefore, assuming

Pv,y) =V ("Y(y), )
of equation (8) we get

_ b ey 11 VM _ o
b()Y(y) oy 2V(v) oV*

» o (10)

where A’ is a positive number. Since equation (10)
is valid for all y and v, instead of (10) can be

considered a pair of equations

V'+ AV =0, (11)
}\‘2
Y'+7b(y)Y=o. (12)
Decision (12) is a function of
1 y
Y(y)=Y(0)exp {—573 j b(y)dy} (13)

We assume that the reflective boundaries are
located at the points V'=0 and V' =2/A. Reflection
condition is the vanishing of the stream function
G(v,y) [3]. For the process ¥ (y) in question.
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GO, y)=—§%[b<y> ).

Hence we find that the density probability
P(v,y) must satisfy the boundary conditions

—P
oV (

P ,
=37 v,)

Taking into account (9), we find

V'(0)=V'(2h) =0.

v=2h = 0

(14)

Decision (11) under the conditions (14) is known
to the system orthonormal functions ¢, :

1 _kn
V)=—, V)=—=cosA,V, A,
0o (V) Toh o (V)= f =25
Therefore, according to the separation of
variables [3], the general solution that satisfies (6),
equal to

0 2_2
Pv,y,\, )—L+ ! cos{k—ko}cos{k—nv}exp k 7'[2
2h  hio 2h 2h 8h”

If the process is viewed in —#, A space,

Phqh(v,y,ko)=%h+cos{§—:(ko+h)}cos{l;—2(v+h)} Zexp{ 2f b(y) y}

~h<ky<h, —h<v<h.

When considering the process of arbitrary
boundaries between ¢, d, ¢ < d, in (15) should
produce a known change of variables [3]:

_ﬂj
2 b

If the initial condition A, =v(0) is a random

variable, according to the method of separation of
variables [3] the general solution will be equal to:

F:-,d (v,y,ko) = P,LL

272
c<v<d.

(v,y,ko

c<h,<d,

d
P, (,3) =[P (v, 0) Py (hy)d R,
c<v<d,

where F, (1) is the probability density value A, .

IV. DETERMINATION OF THE PROBABILITY OF NOT
EXCEEDING OF MARKOV PROCESS BEYOND THE
DEFINED BOUNDARIES

To determine the probability of not exceeding of
the process v beyond the defined boundaries ¢, ,

use the method [3], based on a decision of direct

**7»/

Pv,y)= ZCe 0

b(,v)d,v

cosA,V

Constant C, determined by the initial conditions.
For example, if the process V' at the point y =0
determined, i.e. V' (0) =21, then

PI,0)=5(V ~1.,).

where 8(v) is the Dirac delta function. In this case,
the decomposition [3]

(V- }“o) = Z(I)k (V)(I)k 0),

follows that

Consequently,

]b(y)dy}, 0<h, <2k, 0<v<2h

(15)

Fokker—Planck—Kolmogorov. For the process of V,
this equation takes the form

2
SR = S0P, (6)
where P(v, »,A,) is the density, the probability of
transition v from the initial point A €(c,d) to any
point inside the interval (c,d) for the process
trajectories V' (y) that never reached the boundaries
of ¢, d smaller at coordinates.

To determine the probability ¢, , of the points ¢

and d must be observed absorption condition [3]
P(c,y,h)=P(d,y,},)=0.

Equation (16) with the same form as equation (8).

Therefore, relations (11) — (13) remain valid.
absorption condition will be recorded in the form of
Vic)=V(d)=0.

Following the method of separation of variables
[3] with a = —h, d = h and deterministic initial
condition, we find that the probability of
absenteeism V process abroad —#4, A:
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4 (-1)" (2n+1)mh Qn+1y°n* ¢
) =— cos 0 lex b(»)dy ;,
G () Tt;ZnH { o p vE { (»)dy -

—h <A, <h.
When considering the arbitrary region with in ¢, d

c+d
qcq Vr) =9 4 ca. (y, I j (13)
272 2

If A, a random variable with a density
probability F,(A,), then

d
Ged N = [0, AR ANy (19)

In the derivation of (17) — (19) the whole line of
reasoning is the same as in sections II.

Note, if in the expression for the diffusion
coefficient b(y) (6) it would be taken g(y) = 1, all the
formulas derived in sections II and III will be
transferred to the corresponding formula of Wiener
process [3].

V. EXAMPLE
Random variable with range, uniformly
distributed in
1
B =~ (20)
d-c

From equations (19) — (20) we find that the
probability of absenteeism J process beyond the
boundaries ¢, d:

R _@n+1)’n’ ¢
4= 52 2Mexp{ -0 !b(y)dy}.
1)

Thus, the equations (17) — (21) determine the
probability that the random realization of distributed
circuit characteristic impedance (7) will not exceed

the set limits, that is, these formulas describe the
percentage of product yield. Furthermore, using
expression (17) — (19) at a predetermined reject rate
to define the required accuracy can implement the
wave resistance of irregular lines.

VI. CONCLUSIONS

Based on the theory of Markov processes derived
stochastic description of irregular lines with random
inhomogeneities distributed. For example, we can
see that the obtained formulas determine the
likelihood that will not exceed the set limits, that is,
these formulas describe the percentage of product
yield characteristic impedance at random realization
of distributed circuits. Also, for a given percentage
of the marriage can determine the required accuracy
of the implementation of the wave resistance of
irregular lines.
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