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The effect of temperature variations on the output of Coriolis vibratory gyroscope is studied in
this paper. Mathematical model of the temperature influences is developed and its parameters
are identified using experimental data. The latter has been used to validate obtained model .
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Introduction. Vibratory gyroscopes that utilize Coriolis effect have been successfully used in
vast amount of different applications since micro fabrication techniques made possible to reduce its
cost in mass production along with significant reduction in size [1; 2].

At the same time, Coriolis vibratory gyroscopes (CVG) traditionally occupy niche of low
accuracy sensors due to the low stability of its performance under influence of operational
environment factors. One of the major sources of such instabilities is temperature variations that
cause changes in all measurement characteristics of CVGs [3; 4]. In this paper we study the effect
of temperature variations on CVG, develop empirical model of the temperature influences, identify
its parameters, and develop model of angular rate measurement errors due to the temperature
variations. Later we validate obtained models using experimental data obtained for CVG with
cylindrical sensitive element.

Temperature related zero-rate output. Significant temperature related zero-rate output has
been observed during experimental tests of CVG. For the temperature profile, shown in Fig. 1, and
zero angular rate, CVG output is shown in Fig. 2 (uncompensated).

Temperature variations are assumed to cause this bias through the temperature dependent cross-
damping. In this case excited primary oscillations of the sensitive element will induce secondary
(output) oscillations even without external rotation applied to the sensor. Moreover, cross-damping
induced oscillations will not be distinguishable from the oscillations due to the angular rate.

In order to develop mathematical model for this phenomenon let us first analyze how cross-
damping affects dynamics of the CVS sensitive element.
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Fig. 1. Temperature profile Fig. 2. Coriolis vibratory gyroscopes output with
and without temperature compensation

Sensitive element motion equations. In the most generalized form, motion equations of the
CVG sensitive element both with translational and rotational motion could be represented in the
following form [5]:
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Here X and X, are the generalized coordinates that describe primary (excited) and secondary
(sensed) motions of the sensitive element respectively, k and k, are the corresponding natural
frequencies, ¢, and C, are the dimensionless relative damping coefficients, Q is the measured

angular rate, which is orthogonal to the axes of primary and secondary motions, ¢, and g, are the

generalized accelerations due to the external forces that act on the sensitive element. The remaining
dimensionless coefficients are different for the sensitive elements that exploit either translational or

rotational motion. For the vibrating cylinder sensitive element, for example, d, =d, =1, d, =1,
0, =2, g, =2. For other sensitive elements designs expressions for these coefficients can be found in

[5].
If cross damping is present in the system, the motion equations 1 are transformed to the
following form
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Here (,, and C,, are the relative cross-damping coefficients. Constant cross-coupling

through the damping can be removed by calibration. However, calibration is unable to deal
effectively with varying in time damping.

(2)

Cross-damping induced output. Let us first analyze cross-damping related components in
the amplitude of the secondary oscillations. Transforming equations 2 using amplitude-phase
complex variables is similar to what has been demonstrated in [6], the following first-order equation

for the slowly varying amplitudes ( A, ~ 0) can be produced:
2(C,k, + J(D)Az + (k22 -0’ +2jok,Cy)A =
= (jmng+2ij12kl+Q)Al.

Here A is the constant (does not depend on time) complex amplitude of the primary oscillations
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and complex amplitudes A are expressed in terms of real amplitudes and phases as

A (t) =A, (t)e’*®  where i equals 1 or 2 for the primary or secondary oscillations correspondingly.

It also should be noted that disturbances in primary oscillations caused by secondary are considered
negligible comparing to the forces from the excitation system.

Applying Laplace transformation to both sides of the equation 3, and solving obtained
algebraic equation for the secondary amplitude, results in

_ A[(s+jg,0)Q(s) + 2 jok,Cy, (S)}
k22 -0’ + 2 jok,C, +25(k,C, + jo)

A(S) 4)
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Solution 4 can be represented as a sum of the following two components:

A (8)= A} () + A (S).

AZQ (S) — A(J(Dgz +S) Q(S) (5)

(s+ jw)® +28,k, (s+ jo) + k2

2A jok,
(S+ jo)? +2¢,K, (s+ jo) + K

Azc(s) = CIZ (S)~

Here AS(s) is the part of the secondary amplitude due to the input angular rate, and As(s) is
due to the cross-damping. Corresponding to (5) transfer functions are hence defined as

Az (S) =W29 (S)Q(S) +W2g (S)Clz (S)

WQ(S) _ A(jwg, +9) (6)
2 (S+ jo)? +2¢,k, (s+ jo) + k2

W (s) = 2A Jok, .
2 (s+ jo)? +20,K, (S+ jo)+ K

It is important to remember that the part of the secondary amplitude due to the cross-damping
will be undistinguishable from the one caused by the angular rate. Let us therefore derive transfer
function relating input cross-damping to the output angular rate as

Q° (S) = Wé (S)C12 (S)

where Q°(s) is the measured erroneous angular rate caused by the cross-damping. Quite apparently
unknown transfer function W (s) can be expressed using transfer functions from (6) as

V\/zC (S) _ 2k2 (k22 _(’32 + 2jk2(0C2) .
VVZQ(S_> 0) gz(k22 — o’ +2k2€25+2j('0(s+ kzgz))

W (s) = (8)

Transfer function (8) can be further simplified using assumptions that are relevant to CVGs
with cylindrical sensitive element, and are good approximations for other sensitive elements designs
(see [6]). Namely, we can assume that natural frequencies are equal (k, =k, =k) as well as relative

damping coefficients (£, =&, =), and primary oscillations excitation frequency is o = ky/1-2¢* .

With these assumptions transfer function (8) becomes
2K*¢

9, (s+kQ)

Transfer function (9) allows efficient analysis of errors due to the cross-damping, which is not
only present in the system, but can vary due to the different reasons.

W (s) = (9)

Empirical modelling of cross-damping. If we assume that the cross-damping coefficient is a
function of the temperature shift T from the calibration temperature, it can be approximated using
polynomial as

Cip =Cpp(T) = Zn:CTTI (10)
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Number of terms n in representation (10) is selected to provide required accuracy.

Coefficients ¢ can be determined experimentally when ambient temperature is known
(measured) and angular rate is absent. Parameters of the cross-damping model (10) were found to
have the following values: z;g =1,0792-10°, ] =-4,631-10", ¢l =7,7044-107,

¢ =-5,8598-10°. Influence of the higher order components has been found negligible. In order to

validate cross-damping model (10) we build temperature error compensation system using
parameters mentioned above and a model (9) of cross damping errors.

Coriolis vibratory gyroscopes output after temperature error compensation is shown in Fig. 2
(compensated).

Conclusions. The model of temperature related errors in CVGs along with the empirical
model of the cross-damping developed in this paper have been used to develop temperature error
compensation system, which significantly (approximately 8 times) improved CVG performances in
terms of zero-rate output. In future research we plan to use the model of cross-damping errors to
develop stochastic system of temperature errors compensation.
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B. O. AnocTtoniok, B. B. UikoBaHi

TemnepaTypHa noxmbka mogeni BibpauiiiHoro ripockona Kopionica

BvBYeHO BM/MB 3MiH TemnepaTypy Ha BUXIifAHI CUrHaIM KOPionicoBMX BibpauiiHUX ripocKonis.
Po3pobneHo matemMaTMyHy MOAe/Nlb  TeMMepaTypHuUX BMAMBIB, NapamMeTpu  AKOi  6yro
ILeHTUMIKOBAHO 3 BUKOPUCTAHHAM EKCrepuMeHTaIbHUX JaHUX. B nogansLiomy eKcrepumeHTas bHI
[aHi 6yno BUKOPUCTaHO A/19 NepeBipKN KOPEKTHOCTI OTPUMaHOT MoAeni.

N

B. A. Anoctontok, B. B. HnkosaHn

TemnepaTypHas NorpeLwHoCcTb MOAeNN BUOpaLNOHHOIO rmpockona Kopuonmca

N3ydyeHO BAWAHME W3MEHEHWMIn TemnepaTypbl Ha  BbIXOAHbIX  CUFHa/IbI  KOPUOIMCOBbLIX
BMOPALMOHHBIX T'MPOCOKOMNB. Pa3paboTaHa MaTeMaTyeckast MOAe b TeMMepaTypHbIX BO3AENCTBUIN,
napaMeTpbl KOTOPOA OblNN NAEHTU(NLMPOBaHbI C UCMOb30BAHNEM 3KCNEPUMEHTa/IbHBIX AaHHbIX.
B nocneacTBum aKCnepyMeHTasbHbIE AaHHble ObIN MCNOMb30BaHbl AN NMPOBEPKM KOPPEKTHOCTY
NOIy4YeHHOW MOAENMN.



