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The effect of temperature variations on the output of Coriolis vibratory gyroscope is studied in
this paper. Mathematical model of the temperature influences is developed and its parameters
are identified using experimental data. The latter has been used to validate obtained model.
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Introduction. Vibratory gyroscopes that utilize Coriolis effect have been successfully used in
vast amount of different applications since micro fabrication techniques made possible to reduce its
cost in mass production along with significant reduction in size [1; 2].

At the same time, Coriolis vibratory gyroscopes (CVG) traditionally occupy niche of low
accuracy sensors due to the low stability of its performance under influence of operational
environment factors. One of the major sources of such instabilities is temperature variations that
cause changes in all measurement characteristics of CVGs [3; 4]. In this paper we study the effect
of temperature variations on CVG, develop empirical model of the temperature influences, identify
its parameters, and develop model of angular rate measurement errors due to the temperature
variations. Later we validate obtained models using experimental data obtained for CVG with
cylindrical sensitive element.

Temperature related zero-rate output. Significant temperature related zero-rate output has
been observed during experimental tests of CVG. For the temperature profile, shown in Fig. 1, and
zero angular rate, CVG output is shown in Fig. 2 (uncompensated).

Temperature variations are assumed to cause this bias through the temperature dependent cross-
damping. In this case excited primary oscillations of the sensitive element will induce secondary
(output) oscillations even without external rotation applied to the sensor. Moreover, cross-damping
induced oscillations will not be distinguishable from the oscillations due to the angular rate.

In order to develop mathematical model for this phenomenon let us first analyze how cross-
damping affects dynamics of the CVS sensitive element.

Sensitive element motion equations. In the most generalized form, motion equations of the
CVG sensitive element both with translational and rotational motion could be represented in the
following form [5]:

Fig. 1. Temperature profile Fig. 2. Coriolis vibratory gyroscopes output with
and without temperature compensation
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Here 1x and 2x are the generalized coordinates that describe primary (excited) and secondary
(sensed) motions of the sensitive element respectively, 1k and 2k are the corresponding natural
frequencies, 1 and 2 are the dimensionless relative damping coefficients,  is the measured
angular rate, which is orthogonal to the axes of primary and secondary motions, 1q and 2q are the
generalized accelerations due to the external forces that act on the sensitive element. The remaining
dimensionless coefficients are different for the sensitive elements that exploit either translational or
rotational motion. For the vibrating cylinder sensitive element, for example, 1 2 1d d  , 3 1d  ,

1 2g  , 2 2g  . For other sensitive elements designs expressions for these coefficients can be found in
[5].

If cross damping is present in the system, the motion equations 1 are transformed to the
following form
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Here 12 and 21 are the relative cross-damping coefficients. Constant cross-coupling
through the damping can be removed by calibration. However, calibration is unable to deal
effectively with varying in time damping.

Cross-damping induced output. Let us first analyze cross-damping related components in
the amplitude of the secondary oscillations. Transforming equations 2 using amplitude-phase
complex variables is similar to what has been demonstrated in [6], the following first-order equation
for the slowly varying amplitudes ( 2 0A  ) can be produced:
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Here 1A is the constant (does not depend on time) complex amplitude of the primary oscillations
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and complex amplitudes iA are expressed in terms of real amplitudes and phases as
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i iA t A t e  , where i equals 1 or 2 for the primary or secondary oscillations correspondingly.
It also should be noted that disturbances in primary oscillations caused by secondary are considered
negligible comparing to the forces from the excitation system.

Applying Laplace transformation to both sides of the equation 3, and solving obtained
algebraic equation for the secondary amplitude, results in
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Solution 4 can be represented as a sum of the following two components:
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Here 2 ( )A s is the part of the secondary amplitude due to the input angular rate, and 2 ( )A s is
due to the cross-damping. Corresponding to (5) transfer functions are hence defined as

2 2 2 12( ) ( ) ( ) ( ) ( )A s W s s W s s     

1 2
2 2 2

2 2 2

( )( )
( ) 2 ( )

A j g sW s
s j k s j k

  

      

 (6)

1 2
2 2 2

2 2 2

2( )
( ) 2 ( )

A j kW s
s j k s j k

 

      

.

It is important to remember that the part of the secondary amplitude due to the cross-damping
will be undistinguishable from the one caused by the angular rate. Let us therefore derive transfer
function relating input cross-damping to the output angular rate as

12( ) ( ) ( )s W s s 
   

where ( )s is the measured erroneous angular rate caused by the cross-damping. Quite apparently
unknown transfer function ( )W s

 can be expressed using transfer functions from (6) as
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Transfer function (8) can be further simplified using assumptions that are relevant to CVGs
with cylindrical sensitive element, and are good approximations for other sensitive elements designs
(see [6]). Namely, we can assume that natural frequencies are equal ( 1 2k k k  ) as well as relative

damping coefficients ( 1 2     ), and primary oscillations excitation frequency is 21 2k    .
With these assumptions transfer function (8) becomes
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Transfer function (9) allows efficient analysis of errors due to the cross-damping, which is not
only present in the system, but can vary due to the different reasons.

Empirical modelling of cross-damping. If we assume that the cross-damping coefficient is a
function of the temperature shift T from the calibration temperature, it can be approximated using
polynomial as
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Number of terms n in representation (10) is selected to provide required accuracy.

Coefficients T
i can be determined experimentally when ambient temperature is known

(measured) and angular rate is absent. Parameters of the cross-damping model (10) were found to
have the following values: -3

0 1,0792 10T   , -5
1 4,631 10T    , -7

2 7,7044 10T   ,
-9

3 -5,8598 10T   . Influence of the higher order components has been found negligible. In order to
validate cross-damping model (10) we build temperature error compensation system using
parameters mentioned above and a model (9) of cross damping errors.

Coriolis vibratory gyroscopes output after temperature error compensation is shown in Fig. 2
(compensated).

Conclusions. The model of temperature related errors in CVGs along with the empirical
model of the cross-damping developed in this paper have been used to develop temperature error
compensation system, which significantly (approximately 8 times) improved CVG performances in
terms of zero-rate output. In future research we plan to use the model of cross-damping errors to
develop stochastic system of temperature errors compensation.
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В. О. Апостолюк, В. В. Чіковані
Температурна похибка моделі вібраційного гіроскопа Коріоліса
Вивчено вплив змін температури на вихідні сигнали коріолісових вібраційних гіроскопів.
Розроблено математичну модель температурних впливів, параметри якої було
ідентифіковано з використанням експериментальних даних. В подальшому експериментальні
дані було використано для перевірки коректності отриманої моделі.

В. А. Апостолюк, В. В. Чиковани
Температурная погрешность модели вибрационного гироскопа Кориолиса
Изучено влияние изменений температуры на выходных сигналы кориолисовых
вибрационных гиросокопв. Разработана математическая модель температурных воздействий,
параметры которой были идентифицированы с использованием экспериментальных данных.
В последствии экспериментальные данные были использованы для проверки корректности
полученной модели.


