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Abstract—–It is considered a problem of neuron network modification whose topology has been chosen 
previously as a result of optimization problem solution for given task. The proposed modification 
algorithm is based on two-stages procedure which consists of genetic algorithm and local algorithm of 
optimization. The problem of modification is represented as two tasks: the search of optimal neuron 
network structure and weight coefficients adjustment. For the solution of these two problems it is used 
two-stages algorithm, in which at the first stage it is applied hybrid multicriteria evolutionary algorithm 
and at the second stage it is determined values of weight coefficients with help of back propagation error 
method and method of steepest descent. The determination of optimal values of hidden layers quantity is 
executed with help of adaptive algorithm of merging and growing. 

Index Terms—Neuron networks; optimization problem; hybrid multicriteria evolutionary algorithm; 
method of steepest descent; algorithm of merging and growing. 

I.  INTRODUCTION 

The development and implementation of artificial 
neural networks (ANN) on the basis of advanced 
technologies is one of the priority directions of 
development of branches of science and technology 
in all industrialized countries. 

While solving applied problems, in order to 
increase the accuracy and reduce the complexity, 
there are problems of finding the optimal topology of 
the network and, in accordance with it, the structural 
(determining the number of hidden layers and 
neurons in them, the interneuron’s of separate ANN) 
and parametric (adjustment of weighting 
coefficients) optimization. 

The main limitations of the known methods and 
technologies that are being used today are due to the 
lack of efficiency in solving the problem of learning 
the ANN, adjusting and adapting to the problem 
area, processing incomplete and inaccurate source 
information, interpreting the data and accumulation 
of expert knowledge of the uniform presentation of 
information coming from various sources, etc. 

The construction of hybrid neural networks, 
which consist of different types of ANN, each of 
which is taught by a certain algorithm in a layer, in 
many cases, can significantly improve the 
performance of ANN. 

Most applications use feed forward ANNs and 
the back-propagation (BP) learning algorithm [1]. 
The central issue in using ANNs is to choose their 
architectures appropriately. A too large architecture 
may overfit the training data, owing to its excess 
information processing capability. On the other hand, 
a too small architecture may underfit the training 
data, owing to its limited information processing 
capability. Both overfitting and underfitting cause 

bad generalizations, an undesirable aspect of using 
ANNs. It is therefore necessary to design ANNs 
automatically so that they can solve different 
problems efficiently. 

There have been many attempts in designing 
ANNs automatically, such as various constructive, 
pruning, constructive-pruning, and regularization 
algorithms [2] – [4]. A constructive algorithm adds 
hidden layers, neurons, and connections to a 
minimal ANN architecture. A pruning algorithm 
does the opposite, i.e., it deletes unnecessary hidden 
layers, neurons, and connections from an oversized 
ANN. A constructive–pruning algorithm is a hybrid 
approach that executes a constructive phase first and 
then a pruning phase. In addition, evolutionary 
approaches, such as genetic algorithms [5], 
evolutionary programming [6], [7], and evolution 
strategies [8], have been us. 

II.  PROBLEM STATEMENT OF NEURAL 
NETWORK OPTIMAL MODIFICATION 

The finite set is given   , , 1,...,j jJ j P R Y  

pairs of type "attribute-value", where ,j jR Y  are 
input and output vectors respectively. 

It is necessary to optimally modify the basic 
ANN according to the training sample of this 
problem (structure and parameters) of the chosen 
optimal topology according to a sample of this type 
of task. As the criterion of optimality, a vector 
criterion is adopted 

 1 2( ), ( ) ,I x I xI  

where 1 gen( ) ( )I x E x  is the generalization error, 
which determines the magnitude of the error in 
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solving the task; 2 ( ) ( )I x S x  is the complexity of 
the neural network (the number equal to the total 
number of computational operations needed to 
calculate the source vector Y by the input vector R, 
which depends only on the topology of the network, 
which is determined by the vector Х or number of 
cross-connections); x = (s, p, q, w)T; s is the number 
of hidden layers;  , 1,ip p i s   is the number of 
neurons in hidden layers; ip  is the number of 
neurons in the ith hidden layer;  ,ir ifq q  are cross-
connections; , ,i j i j  are numbers of layers, 

, 1,i j s ; ,r f  are numbers of the neurons in the 
hidden layers i and j respectively; 

1, , 1, ,i jr p f p   where ip  and jp  are number of 
neurons in the layers i and j respectively;  

,

1 cross-connction,
0 no cross-connction,ir ifq 

 


 

 , ,ij kw w 1, ; 1, , 1, .j iji s j p k g    are values of 

weight coefficients; ijg  is the number of inputs of 
the ith neuron and  jth layer.  

III.  ANALYSIS OF EFFECTIVENESS 
OF EVOLUTIONARY ALGORITHM 

The results obtained by the author testify to the 
low percentage of experiments in which the value of 
the extremum with given accuracy was obtained for 
the hybrid genetic algorithm (HGA) [9], methods of 
random gradient search, in case of optimization of 
multi-extremum functions. However, under 
unimodal functions optimization, there is a good 
approximation of the found extremum to the true 
extrumums of all methods, and with the optimization 
of multi-extreme ones – for methods (HGA) and 
random searches. 

The reason for this is the property HGA and 
method of random search, which is associated with 
the rapid localization of the extreme existence zone. 

Gradient algorithms is characterized by a 
consistent study of the search zone which allows in 
most experiments  find a local extremum with a 
given accuracy, but it’s not suitable for the search of 
a global extremum. To contrast to the method of 
random search in HGA, issue a mechanism of 
directed motion to extremum due to implementation 
in the algorithm of natural selection, that’s why 
HGA gives a greater percentage of the localization 
of the global extremum. 

Thus, HGA on one side is time consuming 
enough, requires setting of certain parameters values 
by user, determination of optimal control parameters 

set, so that evolutionary processes  can balance the 
search and using in case of good quality solutions 
finding (for example, if the speed of crossover and 
mutation are chosen too high, then a significant part 
of search space has been investigated, but there is a 
high probability of good solutions loss, inability to 
use existing solutions), reveals the inability highly 
likely to find the exact value of extremum under 
neuron networks training, and, on the other hand, it 
enables to localize the region of global extremum 
existence.  

According to the conclusions it’s expedient to 
create a two-stage optimization algorithm: the 
genetic algorithm will be the most effective 
procedure at the initial stage of the solution finding, 
on which the existence region of the global 
extremum is determined; the second stage of the 
search will be connected to a refinement of the 
minimum based on the local optimization algorithm. 
The analysis of the results showed that the use of the 
local optimization algorithm on the last iteration can 
improve the accuracy of the extremum finding for 
both single-extremity and multi-extremity functions. 
The development and implementation of this 
algorithm is discussed below. The use of two-stage 
algorithm for optimizing the training procedure 
ANN will allow simultaneously to solve two tasks: 
to increase the rate of convergence of the algorithm 
due to the properties of the genetic algorithm, to 
investigate the entire search space as a whole and 
increase the accuracy of the extremum finding 
through the use of effective methods of local 
optimization.  

As stated above, the problem of optimal 
modification of the neural network consists of two 
subtasks: the search of optimal structure (the number 
of hidden layers and neurons in them and the cross-
connections between neurons) and adjusting the 
weighting coefficients (subtask of parametric 
optimization). To solve both subtasks a two-stage 
optimization algorithm is used: in first stage, which 
use hybrid multicriteria evolution algorithm, with 
help of which the zone of finding the optimal 
structure and weight coefficients of ANN is 
localized. At second stage the optimal values of 
ANN weight coefficients determination is executed 
on the basis of back propagation error and steepest 
descent (stochastic gradient descent) methods use 
and the determination of the optimal values of 
hidden layers and the number of neurons in them 
will be realized by means of an adaptive algorithm 
of merging and growing, when for each neuron of 
hidden layer the significance will be calculated and 
in case when its value is less than threshold then 
these neurons will be labeled with the subsequent 
calculation of the correlation coefficients of these 
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neurons with unlabeled neurons of this layer. Each 
labeled hidden neuron will be merged with its most 
correlated from this layer unmarked analogue. In 
case if the learning error in the process of the 
merging performing operations stops decreasing, an 
operation of growing is performed, i.e. adding one 
neuron to this hidden layer, and so on. 

IV. ADAPTIVE ALGORITHM FOR MERGING 
AND GROWING 

Proposed adaptive algorithm for merging and 
growing is a modifying version of [8] and can be 
represented as follows. 

Step 1) Create an initial ANN architecture 
consisting of m hidden layers. The number of 
neurons in the input and output layers is the same as 
the number of inputs and outputs of a given 
problem, respectively. The number of neurons M in 
the hidden layer is generated at random. Initialize 
all connection weights of the ANN uniformly at 
random within a small range. 

Step 2) Initialize an epoch counter μ
іj
 = 0, (i is the 

number of hidden layer; j is the number of hidden 
layer neurons, 1 21, ; 1, ;ii n j n  1n  is the quantity of 
hidden layers; n2і is the quantity of neurons in i 
hidden layer) for each hidden neuron .ijh  This 
counter is used to count the number of epochs for 
which a hidden neuron is trained so far. 

The number of epochs τ is specified by the user. 
Step 3) Train the ANN using a two-stage 

learning optimization algorithm on the training set 
for a fixed number of epochs.  

Step 4) Increment the epoch counter as follows 

1 21, , 1, ,ii n j n   
               ,

k kij ij                           (1) 

where k is the number of epochs, 1, ;k N  N is the 
quantity of epochs where N  is the number of hidden 
neurons in the existing ANN architecture. Initially, 
N and M are the same. 

Step 5) Evaluate each ANN in accordance with a 
predetermined fitness function on the validation set, 
if the termination criterion is satisfied, then stop the 
evolution process and go to step 6. In the opposite 
case, the evolutionary process continues and go to 
step 15. 

Step 6) Compute the error of the ANN on the 
validation set. If the termination criterion is satisfied, 
stop the training process, and the current network 
architecture is the final ANN. Otherwise, continue.  

Step 7) Remove the label of hidden neurons, if 
there exists, and compute the significance 

1 2, 1, , 1,ij ii n j n    of each hidden neuron 

3
,ij

ij
ij


 


 where ij  is the standard deviation, 

which is computed based on the outputs ijh , for the 
examples in the training set. 

Step 8) If the significance of one or more hidden 
neurons is less than the threshold value h* (defined 
by the user), label these neurons with S and 
continue. Otherwise, go to step 13. 

Step9) Compute the correlation between each    
S-labeled hidden neuron and other unlabeled hidden 
neurons in the ANN. 

Step 10) Merge each S-labeled hidden neuron 
with its most correlated unlabeled counterpart. It is 
assumed here that the S-labeled hidden neuron is not 
only less significant but also redundant. Thus, 
AMGA produces one new hidden neuron by 
merging the S-labeled hidden neuron with its 
unlabeled counterpart. This new neuron does not 
contain any label S, and AMGA initializes a new 
epoch counter with zero for it. 

Step11) Repeat the training of a modified ANN, 
which is obtained after the merging of hidden 
neurons, until its previous level of error is reached. 
If a modified ANN is able to reach its previous level 
of error, continue. Otherwise, restore the unmodified 
ANN and go to step 13. 

Step 12) Update the epoch counter for each 
hidden neuron of the modified ANN go to step 6. 
The epoch counter is updated as follows: 

, 1, 2,..., ,
k kij ij r i N     

 
where r  is the number of epochs for which the 
modified ANN is retrained after the merge 
operation. 

Step 13) Check the neuron addition criterion that 
monitors the progress of the training error reduction. 
If this criterion is satisfied, continue. Otherwise, go 
to Step 3 for further training. It is assumed here that, 
since the merge operation is found unsuccessful (or 
cannot be applied) and the neuron addition criterion 
is not satisfied, the performance of the ANN can 
only be improved by training. 

Step 14) Add one neuron to the current ANN 
architecture and go to Step 3. Since the error of the 
ANN does not reduce significantly after training and 
the merge operation is found unsuccessful (or cannot 
be applied), the performance of the ANN can only 
be improved by adding hidden neurons .ijh  The 
hidden neuron is added by splitting an existing 
hidden neuron of the ANN. The splitting operation 
produces two new hidden neurons from an existing 
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hidden neuron. The epoch counters are initialized by 
dividing μ

і
 into two, where μ

і
 is the number of 

epochs for which the existing hidden neuron is 
trained so far. 

Step 15) Choose a ANN for reproducing and 
evolutionary operations. 

Step 16) Apply evolutionary operators such as 
crossover and / or mutation to ANN architectures 
and weight coefficients for obtaining "offspring". 

Step 17) Obtain a new general sample of 
"parents" and "descendant" for the next generation, 
then go to step 3. 

V. RESULTS 

The developed algorithm permits dynamically 
prune or add hidden neurons at different stages of the 
training process. This means that two-stages 

algorithm applies the merge or add operation when 
the criteria for these operations were satisfied during 
training. It is agreed with the results, received in [8].  

The application of two-stages algorithm was 
considered under creation of deep belief networks.  

Deep belief networks can be used to solve a wide 
range of tasks (classification, forecasting, etc.). For 
faster results, deep belief networks were used to solve 
a prediction task based on a minimalistic sample. 

The kin sample (Kinematics of Robot Arm) 
describes the kinematics of a robot manipulator with 
multiple links. Among the existing variants of this 
sample, the 8mn version (8 parts of the manipulator) 
is used in the work. This option is considered highly 
nonlinear and moderately noisy. 

The results of proposed algorithm are shown on 
Fig. 1. 

      
Fig. 1. Results of proposed algorithm functioning

VI. CONCLUSION 

A new method for modifying a neural network 
has been developed, in which the adaptation of the 
SNM parameters (weight coefficients, architecture) 
is carried out in two stages in order to increase the 
efficiency of the solution of the problem (increase of 
accuracy and reduction of solving time): in the first 
stage a hybrid multicriteria evolutionary algorithm is 
used, and on the second - for more accurate 
determination of the number of neurons in hidden 
layers an adaptive algorithm of merging and 
growing is used, the weighting coefficients are 
specified by the method steepest descent. 

This approach permits to design compact ANN 
architectures with good generalization ability. 
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О. І. Чумаченко.  Алгоритм спрощення гібридних нейронних мереж  
Розглянуто задачу модифікації нейронної мережі, топологія якої була обрана раніше в результаті вирішення 
оптимізаційної проблеми. Запропонований алгоритм вирішення базується на двоетапній процедурі, яка 
складається з генетичного і локального алгоритму оптимізації. Проблему модифікації представлено у вигляді 
двох задач: пошук оптимальної структури нейронної мережі і налаштування вагових коефіцієнтів. Для 
вирішення цих двох завдань використано двоетапний алгоритм, у якому на першому етапі застосовується 
гібридний багатокритеріальний еволюційний алгоритм, а на другому етапі визначаються значення вагових 
коефіцієнтів за допомогою методу зворотного поширення помилки і методу найшвидшого спуску. Визначення 
оптимальної кількості прихованих шарів виконується за допомогою адаптивного алгоритму об'єднання і 
нарощування. 
Ключові слова: нейронні мережі; проблема оптимізації; гібридний багатокритеріальний еволюційний 
алгоритм; метод найшвидшого спуску; алгоритм об'єднання і нарощування. 
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Е. И. Чумаченко. Алгоритм упрощения гибридных нейронных сетей 
Рассмотрена задача модификации нейронной сети, топология которой была выбрана ранее в результате 
решения оптимизационной проблемы. Предложенный алгоритм решения основан на двухэтапной процедуре, 
которая состоит из генетического и локального алгоритма оптимизации. Проблема модификации предоставлена 
в виде двух задач: поиск оптимальной структуры нейронной сети и настройки весовых коэффициентов. Для 
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