
O.I. Chumachenko Algorithm of Neuron Networks Modification 59

©National Aviation University, 2018
http://ecs.in.ua

UDC 004.855 (045)
DOI: 10.18372/1990-5548.56.12936

O. I. Chumachenko

ALGORITHM OF NEURON NETWORKS MODIFICATION
National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine

E-mail: chumachenko@tk.kpi.ua
Abstract—–It is considered a problem of neuron network modification whose topology has been chosen
previously as a result of optimization problem solution for given task. The proposed modification
algorithm is based on two-stages procedure which consists of genetic algorithm and local algorithm of
optimization. The problem of modification is represented as two tasks: the search of optimal neuron
network structure and weight coefficients adjustment. For the solution of these two problems it is used
two-stages algorithm, in which at the first stage it is applied hybrid multicriteria evolutionary algorithm
and at the second stage it is determined values of weight coefficients with help of back propagation error
method and method of steepest descent. The determination of optimal values of hidden layers quantity is
executed with help of adaptive algorithm of merging and growing.

Index Terms—Neuron networks; optimization problem; hybrid multicriteria evolutionary algorithm;
method of steepest descent; algorithm of merging and growing.

I. INTRODUCTION

The development and implementation of artificial
neural networks (ANN) on the basis of advanced
technologies is one of the priority directions of
development of branches of science and technology
in all industrialized countries.

While solving applied problems, in order to
increase the accuracy and reduce the complexity,
there are problems of finding the optimal topology of
the network and, in accordance with it, the structural
(determining the number of hidden layers and
neurons in them, the interneuron’s of separate ANN)
and parametric (adjustment of weighting
coefficients) optimization.

The main limitations of the known methods and
technologies that are being used today are due to the
lack of efficiency in solving the problem of learning
the ANN, adjusting and adapting to the problem
area, processing incomplete and inaccurate source
information, interpreting the data and accumulation
of expert knowledge of the uniform presentation of
information coming from various sources, etc.

The construction of hybrid neural networks,
which consist of different types of ANN, each of
which is taught by a certain algorithm in a layer, in
many cases, can significantly improve the
performance of ANN.

Most applications use feed forward ANNs and
the back-propagation (BP) learning algorithm [1].
The central issue in using ANNs is to choose their
architectures appropriately. A too large architecture
may overfit the training data, owing to its excess
information processing capability. On the other hand,
a too small architecture may underfit the training
data, owing to its limited information processing
capability. Both overfitting and underfitting cause

bad generalizations, an undesirable aspect of using
ANNs. It is therefore necessary to design ANNs
automatically so that they can solve different
problems efficiently.

There have been many attempts in designing
ANNs automatically, such as various constructive,
pruning, constructive-pruning, and regularization
algorithms [2] – [4]. A constructive algorithm adds
hidden layers, neurons, and connections to a
minimal ANN architecture. A pruning algorithm
does the opposite, i.e., it deletes unnecessary hidden
layers, neurons, and connections from an oversized
ANN. A constructive–pruning algorithm is a hybrid
approach that executes a constructive phase first and
then a pruning phase. In addition, evolutionary
approaches, such as genetic algorithms [5],
evolutionary programming [6], [7], and evolution
strategies [8], have been us.

II. PROBLEM STATEMENT OF NEURAL
NETWORK OPTIMAL MODIFICATION

The finite set is given   , , 1,...,j jJ j P R Y

pairs of type "attribute-value", where ,j jR Y are
input and output vectors respectively.

It is necessary to optimally modify the basic
ANN according to the training sample of this
problem (structure and parameters) of the chosen
optimal topology according to a sample of this type
of task. As the criterion of optimality, a vector
criterion is adopted

 1 2(), () ,I x I xI

where 1 gen() ()I x E x is the generalization error,
which determines the magnitude of the error in

60 ISSN 1990-5548 Electronics and Control Systems 2018. N2(56): 59-63

solving the task; 2 () ()I x S x is the complexity of
the neural network (the number equal to the total
number of computational operations needed to
calculate the source vector Y by the input vector R,
which depends only on the topology of the network,
which is determined by the vector Х or number of
cross-connections); x = (s, p, q, w)T; s is the number
of hidden layers;  , 1,ip p i s  is the number of
neurons in hidden layers; ip is the number of
neurons in the ith hidden layer;  ,ir ifq q are cross-
connections; , ,i j i j are numbers of layers,

, 1,i j s ; ,r f are numbers of the neurons in the
hidden layers i and j respectively;

1, , 1, ,i jr p f p  where ip and jp are number of
neurons in the layers i and j respectively;

,

1 cross-connction,
0 no cross-connction,ir ifq 

 


 , ,ij kw w 1, ; 1, , 1, .j iji s j p k g   are values of

weight coefficients; ijg is the number of inputs of
the ith neuron and jth layer.

III. ANALYSIS OF EFFECTIVENESS
OF EVOLUTIONARY ALGORITHM

The results obtained by the author testify to the
low percentage of experiments in which the value of
the extremum with given accuracy was obtained for
the hybrid genetic algorithm (HGA) [9], methods of
random gradient search, in case of optimization of
multi-extremum functions. However, under
unimodal functions optimization, there is a good
approximation of the found extremum to the true
extrumums of all methods, and with the optimization
of multi-extreme ones – for methods (HGA) and
random searches.

The reason for this is the property HGA and
method of random search, which is associated with
the rapid localization of the extreme existence zone.

Gradient algorithms is characterized by a
consistent study of the search zone which allows in
most experiments find a local extremum with a
given accuracy, but it’s not suitable for the search of
a global extremum. To contrast to the method of
random search in HGA, issue a mechanism of
directed motion to extremum due to implementation
in the algorithm of natural selection, that’s why
HGA gives a greater percentage of the localization
of the global extremum.

Thus, HGA on one side is time consuming
enough, requires setting of certain parameters values
by user, determination of optimal control parameters

set, so that evolutionary processes can balance the
search and using in case of good quality solutions
finding (for example, if the speed of crossover and
mutation are chosen too high, then a significant part
of search space has been investigated, but there is a
high probability of good solutions loss, inability to
use existing solutions), reveals the inability highly
likely to find the exact value of extremum under
neuron networks training, and, on the other hand, it
enables to localize the region of global extremum
existence.

According to the conclusions it’s expedient to
create a two-stage optimization algorithm: the
genetic algorithm will be the most effective
procedure at the initial stage of the solution finding,
on which the existence region of the global
extremum is determined; the second stage of the
search will be connected to a refinement of the
minimum based on the local optimization algorithm.
The analysis of the results showed that the use of the
local optimization algorithm on the last iteration can
improve the accuracy of the extremum finding for
both single-extremity and multi-extremity functions.
The development and implementation of this
algorithm is discussed below. The use of two-stage
algorithm for optimizing the training procedure
ANN will allow simultaneously to solve two tasks:
to increase the rate of convergence of the algorithm
due to the properties of the genetic algorithm, to
investigate the entire search space as a whole and
increase the accuracy of the extremum finding
through the use of effective methods of local
optimization.

As stated above, the problem of optimal
modification of the neural network consists of two
subtasks: the search of optimal structure (the number
of hidden layers and neurons in them and the cross-
connections between neurons) and adjusting the
weighting coefficients (subtask of parametric
optimization). To solve both subtasks a two-stage
optimization algorithm is used: in first stage, which
use hybrid multicriteria evolution algorithm, with
help of which the zone of finding the optimal
structure and weight coefficients of ANN is
localized. At second stage the optimal values of
ANN weight coefficients determination is executed
on the basis of back propagation error and steepest
descent (stochastic gradient descent) methods use
and the determination of the optimal values of
hidden layers and the number of neurons in them
will be realized by means of an adaptive algorithm
of merging and growing, when for each neuron of
hidden layer the significance will be calculated and
in case when its value is less than threshold then
these neurons will be labeled with the subsequent
calculation of the correlation coefficients of these

O.I. Chumachenko Algorithm of Neuron Networks Modification 61

neurons with unlabeled neurons of this layer. Each
labeled hidden neuron will be merged with its most
correlated from this layer unmarked analogue. In
case if the learning error in the process of the
merging performing operations stops decreasing, an
operation of growing is performed, i.e. adding one
neuron to this hidden layer, and so on.

IV. ADAPTIVE ALGORITHM FOR MERGING
AND GROWING

Proposed adaptive algorithm for merging and
growing is a modifying version of [8] and can be
represented as follows.

Step 1) Create an initial ANN architecture
consisting of m hidden layers. The number of
neurons in the input and output layers is the same as
the number of inputs and outputs of a given
problem, respectively. The number of neurons M in
the hidden layer is generated at random. Initialize
all connection weights of the ANN uniformly at
random within a small range.

Step 2) Initialize an epoch counter μ
іj
 = 0, (i is the

number of hidden layer; j is the number of hidden
layer neurons, 1 21, ; 1, ;ii n j n  1n is the quantity of
hidden layers; n2і is the quantity of neurons in i
hidden layer) for each hidden neuron .ijh This
counter is used to count the number of epochs for
which a hidden neuron is trained so far.

The number of epochs τ is specified by the user.
Step 3) Train the ANN using a two-stage

learning optimization algorithm on the training set
for a fixed number of epochs.

Step 4) Increment the epoch counter as follows

1 21, , 1, ,ii n j n 
 ,

k kij ij     (1)

where k is the number of epochs, 1, ;k N N is the
quantity of epochs where N is the number of hidden
neurons in the existing ANN architecture. Initially,
N and M are the same.

Step 5) Evaluate each ANN in accordance with a
predetermined fitness function on the validation set,
if the termination criterion is satisfied, then stop the
evolution process and go to step 6. In the opposite
case, the evolutionary process continues and go to
step 15.

Step 6) Compute the error of the ANN on the
validation set. If the termination criterion is satisfied,
stop the training process, and the current network
architecture is the final ANN. Otherwise, continue.

Step 7) Remove the label of hidden neurons, if
there exists, and compute the significance

1 2, 1, , 1,ij ii n j n   of each hidden neuron

3
,ij

ij
ij


 


 where ij is the standard deviation,

which is computed based on the outputs ijh , for the
examples in the training set.

Step 8) If the significance of one or more hidden
neurons is less than the threshold value h* (defined
by the user), label these neurons with S and
continue. Otherwise, go to step 13.

Step9) Compute the correlation between each
S-labeled hidden neuron and other unlabeled hidden
neurons in the ANN.

Step 10) Merge each S-labeled hidden neuron
with its most correlated unlabeled counterpart. It is
assumed here that the S-labeled hidden neuron is not
only less significant but also redundant. Thus,
AMGA produces one new hidden neuron by
merging the S-labeled hidden neuron with its
unlabeled counterpart. This new neuron does not
contain any label S, and AMGA initializes a new
epoch counter with zero for it.

Step11) Repeat the training of a modified ANN,
which is obtained after the merging of hidden
neurons, until its previous level of error is reached.
If a modified ANN is able to reach its previous level
of error, continue. Otherwise, restore the unmodified
ANN and go to step 13.

Step 12) Update the epoch counter for each
hidden neuron of the modified ANN go to step 6.
The epoch counter is updated as follows:

, 1, 2,..., ,
k kij ij r i N     

where r is the number of epochs for which the
modified ANN is retrained after the merge
operation.

Step 13) Check the neuron addition criterion that
monitors the progress of the training error reduction.
If this criterion is satisfied, continue. Otherwise, go
to Step 3 for further training. It is assumed here that,
since the merge operation is found unsuccessful (or
cannot be applied) and the neuron addition criterion
is not satisfied, the performance of the ANN can
only be improved by training.

Step 14) Add one neuron to the current ANN
architecture and go to Step 3. Since the error of the
ANN does not reduce significantly after training and
the merge operation is found unsuccessful (or cannot
be applied), the performance of the ANN can only
be improved by adding hidden neurons .ijh The
hidden neuron is added by splitting an existing
hidden neuron of the ANN. The splitting operation
produces two new hidden neurons from an existing

62 ISSN 1990-5548 Electronics and Control Systems 2018. N2(56): 59-63

hidden neuron. The epoch counters are initialized by
dividing μ

і
 into two, where μ

і
 is the number of

epochs for which the existing hidden neuron is
trained so far.

Step 15) Choose a ANN for reproducing and
evolutionary operations.

Step 16) Apply evolutionary operators such as
crossover and / or mutation to ANN architectures
and weight coefficients for obtaining "offspring".

Step 17) Obtain a new general sample of
"parents" and "descendant" for the next generation,
then go to step 3.

V. RESULTS

The developed algorithm permits dynamically
prune or add hidden neurons at different stages of the
training process. This means that two-stages

algorithm applies the merge or add operation when
the criteria for these operations were satisfied during
training. It is agreed with the results, received in [8].

The application of two-stages algorithm was
considered under creation of deep belief networks.

Deep belief networks can be used to solve a wide
range of tasks (classification, forecasting, etc.). For
faster results, deep belief networks were used to solve
a prediction task based on a minimalistic sample.

The kin sample (Kinematics of Robot Arm)
describes the kinematics of a robot manipulator with
multiple links. Among the existing variants of this
sample, the 8mn version (8 parts of the manipulator)
is used in the work. This option is considered highly
nonlinear and moderately noisy.

The results of proposed algorithm are shown on
Fig. 1.

Fig. 1. Results of proposed algorithm functioning

VI. CONCLUSION

A new method for modifying a neural network
has been developed, in which the adaptation of the
SNM parameters (weight coefficients, architecture)
is carried out in two stages in order to increase the
efficiency of the solution of the problem (increase of
accuracy and reduction of solving time): in the first
stage a hybrid multicriteria evolutionary algorithm is
used, and on the second - for more accurate
determination of the number of neurons in hidden
layers an adaptive algorithm of merging and
growing is used, the weighting coefficients are
specified by the method steepest descent.

This approach permits to design compact ANN
architectures with good generalization ability.

REFERENCES

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning internal representations by error
propagation,” in Parallel Distributed Processing,
vol. I, D. E. Rumelhart and J. L. McClelland, Eds.
Cambridge, MA: MIT Press, 1986, pp. 318–362.

[2] T. Y. Kwok and D. Y. Yeung, “Constructive
algorithms for structure learning in feedforward
neural networks for regression problems,” IEEE
Trans. Neural Netw., vol. 8, no. 3, pp. 630–645, May
1997.

[3] R. Reed, “Pruning algorithms – A survey,” IEEE
Trans. Neural Netw., vol. 4, no. 5, pp. 740–747, Sep.
1993.

[4] F. Girosi, M. Jones, and T. Poggio, “Regularization
theory and neural networks architectures,” Neural
Comput., vol. 7, no. 2, pp. 219–269, Mar. 1995.

[5] J. H. Holland, Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: Univ. Michigan Press,
1975.

[6] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial
Intelligence Through Simulated Evolution. New
York: Wiley, 1966.

[7] D. B. Fogel, Evolutionary Computation: Toward a
New Philosophy of Machine Intelligence. New York:
IEEE Press, 1995.

[8] Md. Monirul Islam, Md. Abdus Sattar, Md. Faijul
Amin, Xin Yao, Fellow, IEEE, and Kazuyuki
Murase, “A New Adaptive Merging and Growing
Algorithmfor Designing Artificial Neural Networks,”

O.I. Chumachenko Algorithm of Neuron Networks Modification 63

IEEE Transactions on Systems, Man, and
Cybernetics – Part B: Cybernetics, vol. 39, no. 3,
June 2009, pp. 705–709.

[9] V. M. Sineglazov, O. I. Chumachenko, and D. Koval,
"Improvement of the Hybrid Genetic Algorithm for

the Deep Neural Networks Synthesis," IV
International Scientific and Practical Conference
"Computing Intellect" (Kyiv, May 16-18, 2017), pp.
142–143.

Received February 09, 2018

Chumachenko Olena. Candidate of Science (Engineering). Assosiate Professor.
Technical Cybernetic Department, National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic
Institute,” Kyiv, Ukraine.
Education: Georgian Politechnic Institute, Tbilisi, Georgia, (1980).
Research area: system analysis, artificial neuron networks.
Publications: mοrе thаn 60 papers.
E-mail: chumachenko@tk.kpi.ua

О. І. Чумаченко. Алгоритм спрощення гібридних нейронних мереж
Розглянуто задачу модифікації нейронної мережі, топологія якої була обрана раніше в результаті вирішення
оптимізаційної проблеми. Запропонований алгоритм вирішення базується на двоетапній процедурі, яка
складається з генетичного і локального алгоритму оптимізації. Проблему модифікації представлено у вигляді
двох задач: пошук оптимальної структури нейронної мережі і налаштування вагових коефіцієнтів. Для
вирішення цих двох завдань використано двоетапний алгоритм, у якому на першому етапі застосовується
гібридний багатокритеріальний еволюційний алгоритм, а на другому етапі визначаються значення вагових
коефіцієнтів за допомогою методу зворотного поширення помилки і методу найшвидшого спуску. Визначення
оптимальної кількості прихованих шарів виконується за допомогою адаптивного алгоритму об'єднання і
нарощування.
Ключові слова: нейронні мережі; проблема оптимізації; гібридний багатокритеріальний еволюційний
алгоритм; метод найшвидшого спуску; алгоритм об'єднання і нарощування.

Чумаченко Олена Іллівна. Кандидат технічних наук. Доцент.
Кафедра технічної кібернетики, Національний технічний університет України «Київський політехнічний
інститут ім. Ігоря Сікорського», Київ, Україна.
Освіта: Грузинський політехнічний інститут, Тбілісі, Грузія, (1980).
Напрям наукової діяльності: системний аналіз, штучні нейронні мережі.
Кількість публікацій: більше 60 наукових робіт.
E-mail: chumachenko@tk.kpi.ua

Е. И. Чумаченко. Алгоритм упрощения гибридных нейронных сетей
Рассмотрена задача модификации нейронной сети, топология которой была выбрана ранее в результате
решения оптимизационной проблемы. Предложенный алгоритм решения основан на двухэтапной процедуре,
которая состоит из генетического и локального алгоритма оптимизации. Проблема модификации предоставлена
в виде двух задач: поиск оптимальной структуры нейронной сети и настройки весовых коэффициентов. Для
решения этих двух задач использован двухэтапный алгоритм, в котором на первом этапе применяется
гибридный многокритериальный эволюционный алгоритм, а на втором этапе определяются значения весовых
коэффициентов с помощью метода обратного распространения ошибки и метода наискорейшего спуска.
Определение оптимального количества скрытых слоев выполняется с помощью адаптивного алгоритма
объединения и наращивания.
Ключевые слова: нейронные сети; проблема оптимизации; гибридный многокритериальный эволюционный
алгоритм; метод наискорейшего спуска; алгоритм объединения и наращивания.

Чумаченко Елена Ильинична. Кандидат технических наук. Доцент.
Кафедра технической кибернетики, Национальный технический университет Украины «Киевский
политехнический институт им. Игоря Сикорского», Киев, Украина.
Образование: Грузинский политехнический институт, Тбилиси, Грузия, (1980).
Направление научной деятельности: системный анализ, искусственные нейронные сети.
Количество публикаций: более 60 научных работ.
E-mail: chumachenko@tk.kpi.ua

