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Abstract—The algorithm for constructing expert systems through training multilayer artificial neural
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use for analyze the problem domain system of
artificial neural networks that may contribute to an

Despite the fame approaches of expert systems in  objective judgment of experts on the subject.
practice, them inherent drawbacks are that in most

cases the person who decides on the basis of the II. PROBLEM STATEMENT
findings of experts to be sure the appropriate
professional competence of experts, which is not
always true.
Expert opinion must be based on more perfect
knowledge of the subject area under uncertainty.
One of the possible solutions to this problem is to

I. INTRODUCTION

It is proposed to include a multilayer ANN
hidden layers as experts on the subject area, which
should provide objective expert judgment on the
issue under study. Examples include experts ANN
shown in Fig. 1 [1].
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Fig. 1. (a) Nonlinear model of an artificial neuron; (b) FNN configuration with two hidden
layers; (c) Extended modular neural network configuration with K experts [6]
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Notable among neural expert systems occupy
predictive models are used, for example, to predict
disease outcomes.

Forward neural network model can be used in
Demographic and Health Organization [2], [3].

Another application of Newtonian optimization
strategy is the Levenberg-Marquardt algorithm.
When using the exact value of Hessian replaced
approksymuyuchym value that is calculated based
on information contained in the gradient of
regularization, considering some factors [4].

To describe this method present objective
function as corresponding to the existence of a
single training set

E(w) = %Z[e,. )T,

e, =[y,(w)—d,], (1)
[ Oe,  Oe, de, |
Oe, Oe, Oe,
Jow=| ow  ow, T ow, |,
Oe,, Oe, Oe,,

gradient vector and approcsimated Hessian matrix,
corresponding objective function,

g(x)=exp M] ,
o
defined as
gw)=[J(W)]" e(w), (2)
Gw)=[J(W)]" J (W) + R(w), (3)

where R(w) — components of Hessian, that contain

relatively higher derivatives. The essence of the
approach Levenberg—Marquardt is approximation of
R(w), using factor of regulariztion v/, which
variable parameter v, called Levenberg—Marquardt
parameter, is a scalar quantity, that varies during
optimization. Thus, Hessian matrix at k th step of
the algorithm becomes:

G(w,)=[J(w, ' J(W )+ v, 1. 4)

At the beginning of training,when the actual
value w, is still far from the desired solution, using
the value v, , that far exceeds the actual value of the

matrix [J(w,)]'J(w,). In this case, the Hessian

actually replaced to factor: G(w,)=v,/, and the
direction chosen by minimizing gradient descent:

__g(Wk)

k v, :

As reducing errors and closer to the desired
solution decreases the parameter v, and the first term
in (3) begins to play an increasingly important role.

The effectiveness of the algorithm affects
educated choice of v,. Too much importance as the

initial optimization should decrease until reaching
zero at the actual decision to close pursuit. There are
different ways of selecting this value, but we limit
ourselves to just one original method proposed by D.
Marquardt. Let the objective function value on £ th

and (k —1) -th iteration steps are denote as FE, and

E,_,, and parameter v values — v,, v, ,. Reduction

of coefficient v values denote »>1. According to

the classical algorithm LM value changes as follows:
—if E(v,_,/r)<E,then v, =v, , /r take;

— if E(v,,/r)>E,and E(v, |)<E,, then
accept v, =v,_;;
— if E(v,,/r)>E, and E(v,,)>E,, then

gradually increase m to reach v just mentioned
E(v, ,r")<E,, while taking v, = v, ,r".
This procedure is performed to change the value

of the moment in which the so-called reflection
coefficient fidelity g, calculated by the equation

— Ek — Ek—]
[Aw, ] g, +1/2[Aw, ] G, Aw,

q

reaches a value close to one. This quadratic
approximation of the objective function has a high
degree of coincidence with the true value, which
indicates the proximity of the optimal solution. In
this situation factor of regularization may be omitted
(v, =0), the process of Hessian reduced to direct

first-order approximation, and LM algorithm turns
into Newton algorithm, characterized quadratic
convergence to the optimal solution.

III. PROBLEM SOLUTION

Modified modular ANN is trained, using
algorithms, adapted in accordance with model of
gauss shift [5], as well as back propagation
algorithm errors, including calculation of gradient
descent.

We use some symbols: the structure has experts

MLP (indexed to i=1,K) with hidden layers

(indexed to i =1,L ) of neurons. In addition, there is
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a network of MLP LPas layers (indexed to / =1,¢")

of neurons in each layer (indexed j=1,¢"").

The main point of this algorithm is the increment
of synaptic weights network, running on several
levels. Synaptic weight updated by experts
according to:

(fk) (n+1)= W((% () + 115”K> (m)y§" (),

O)

where nis the learning speed and gradient &', for

the neurons in the output layer:
8k ()= (e, ()¢l [ gy () |,

where e, =y, (K)—d,. The gradient for the neurons
of hidden layers is calculated as:

(/+])

80 (= 9k [ Vfky (1) ZS’*”(n)w”:‘;) ().

m=1

Updates synaptic weight of network is performed
by

0] — O 0) )
a (n+1)= a0, (n) + 08 () (),
where the original gradient layer:
8 (m)=[h,(n) = g,(m] % [ Vi) () |.
The error is the difference between 4 and g,.

Gradient hidden layers by the equation

(/+])

! ! !
p Z 8¢ H)(”)afn;”(”)
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Thus, the error is returned to its network of
hidden layers.

This algorithm is used for processing EEG
fragment using RBF algorithms and optimization
descent (the distance from the point of extremum) and
Levenberg—Marquardt approaches the fixed points.

The result of simulation of multilayer ANN with
expert in hidden layer for fragment of EEG is
presented on Fig. 2.
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Fig. 2. Graphics of etalon and result of leaning of ANN for fragment of EEG

IV. CONCLUSIONS

The algorithm for solving the problem of
optimizing the parameters of multilayer neural
networks and constructing the set of expert reports.

Developed appropriate software implementation
language C.
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. C. T'epacimoBa, B. 1. CepaakoBcbkuii. AJropuT™M NOOYI0BM €KCHEPTHHX CHCTEeM Ha IPYHTi IITY4YHHX
HEHPOHHUX Mepe:K

Po3risiHyTO anroput™ moOyAOBH €KCIIEPTHHUX CHUCTEM 3a JOIIOMOrOI0 HaBYaHHs OaraTomapoBoi MITYYHOI HEHPOHHOT
Mepexi. 3alporoHOBAaHO ANTOPUTM ONTUMI3allii BariB IITYy4HOI Mepexi 3a MmerojoMm JleBeHOepra—MapkBapara.
EdexrtuBHicTh HaBYaHHA INTYYHOI HEHPOHHOI Mepexi INPONEMOHCTPOBAaHO Ha NPHUKIAAlI  Kiacupikamii
elekTpoeHuedanorpam..

Karwu4oBi cioBa: ekcrieptHa cucrema, IITydHa HEHpoHHa Mepexka, meron JleBeHOepra—MapkBapara, pajiaibHa
0a3ucHa QYHKINS, eJIeKTpoeHIehaTorpaMu.
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. C. I'epacumoBa, B.A. CepnakoBckuii. AJITOPUTM NMOCTPOEHHUS] IKCIMEPTHHIX CHCTEeM Ha 0a3e MCKYCCTBEHHBIX
HePOHHBIX ceTei

PaccMoTpeH anropuUTM IOCTPOCHHSI DKCIEPTHBIX CHUCTEM Ha 0a3e MCKYCCTBEHHBIX HEHpPOHHBIX cereil. [Ipemnoxen
aITOPUTM ONTHUMH3AIMK BECOB HCKYCCTBEHHOW HEWPOHHOW CETH Ha OCHOBE aJTOpUTMa ontuMuianuy JleBeHOepra—
MapxkBapara.  OQQeKkTHBHOCT, ~ OOydeHHs  CeTM  INPOWUIIOCTPHpPOBaHA Ha  NpuUMepe  Kiacchudukanmu
3NIeKTpodHLEedanorpam.
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