CORRELATION STEREOSCOPE RECOGNITION ALGORITHM

Educational-Scientific Institute of Information Diagnostic Systems, National Aviation University, Kyiv, Ukraine

E-mails: 1m_muhina@inbox.ru, 2michaelpanarin@inbox.ru

Abstract—The paper deals with Correlation Stereoscope Recognition. Software has been developed with the help of which flight data received from UAV is processed. UAV motion simulation with camera on board has been conducted and photo has been captured from it. Photo has been processed by different methods, with the help of which feature points has been detected, matched and triangulated to create a 3D relief. Result of research shows that probabilities of recognition correspond to specified level, even if image is distorted. Usage of proposed system of correlation stereoscope recognition proved itself as usable in conditions of real-time height estimation and relief recovery system.

Index terms—Corner detection; Harris; SURF; Direct Linera Transformation; KLT; Relief recovery; Triangulation; stereo vision; stereocorrespondence.

I. INTRODUCTION

The introduction of modern computer technologies in various fields of science and technology forces us to research the issues of the 3D imaging and modeling.

At the moment, there are many ways to determine the height of unmanned aerial vehicle (UAV). Barometric altimeter, Global Positioning System (GPS), and so on. However, they have specific disadvantages in the accuracy of the determination, as well as the calculation of the height from the sea level. My system, on the other side uses images captured in real time and determines the height of the relief surface, which UAV flies over.

So, as with the help of my system it is possible to determine distance to the specific sites of relief, in the long term, this system can be used to build 3D maps of the area, which may be useful in various fields.

II. PROBLEM STATEMENT

The purpose of this work is to develop an algorithm, that with the help of two calibrated cameras and an on-board computing device is able to compute the 3rd parameter (height) as well as data about relief of the ground UAV flies over.

The system assumes that the cameras are pre-calibrated and calibration parameters are known.

Input data of algorithm are stereopair of one area captured by the cameras of pinhole model.

In this model, we place a plane (this will be the image plane) some distance from a point which we will call the camera center. We map a point into the image plane by translating the point on a straight line towards the camera center, until it intersects the image plane. For simplicity, we will first assume that the camera center is at the origin of a 3D coordinate frame. We will also assume that the image plane is positioned parallel to the xy-plane, at position $z = f$. We will define a 2D coordinate system in the image plane with origin at position $(0, 0, f)$ (in 3D Euclidean coordinates). The x and y axes of this new frame will be parallel to the x and y axes of the 3D frame (Fig. 1). We will often use the term “image coordinates” when we are referring to this new frame. Imagine a point in 3D space with y-coordinate 0.

\[
\begin{bmatrix}
X_{\text{world}} \\
Y_{\text{world}} \\
Z_{\text{world}} \\
1
\end{bmatrix} =
\begin{bmatrix}
R & T \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
X_{\text{cam}} \\
1
\end{bmatrix}
\]

Fig. 1. Correlation of image plane and camera plane

So, lets assume that X_{world} and X_{cam} are the homogeneous coordinates of a single point in the world and camera frames, respectively, and that they are related by:

\[
X_{\text{cam}} = \begin{pmatrix}
R \\
0 \\
0 \\
1
\end{pmatrix} X_{\text{world}}.
\]
Then, the function which maps a point in homogeneous world coordinates to image coordinates is given by:

\[
\begin{bmatrix}
X \\
Y \\
Z \\
w
\end{bmatrix} \rightarrow
\begin{pmatrix}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
w
\end{bmatrix} =
\begin{bmatrix}
I_x \\
I_y \\
I_z \\
w
\end{bmatrix}.
\]
(2)

We will use \(\rho \) to denote the camera projection operation. Then, we can write this more simply as:

\[
\rho(X_{\text{world}}) = PX_{\text{world}},
\]

\[
P = \begin{pmatrix}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{pmatrix} (R^T).
\]
(3)

The matrix \(P \) is called the cameras projection matrix.

III. CORNER DETECTION

An interest point is a point in an image which has a well-defined position and can be robustly detected. This means that an interest point can be a corner but it can also be, for example, an isolated point of local intensity maximum or minimum, line endings, or a point on a curve where the curvature is locally maximal.

Without loss of generality, we will assume a grayscale 2-dimensional image is used. Let this image be given by \(I \). Consider taking an image patch over the area \((u, v)\) and shifting it by \((x, y)\). The weighted sum of squared differences (SSD) between these two patches, denoted \(S \), is given by:

\[
S(x, y) = \sum_u \sum_v w(u, v) I(u + x, v + y) - I(u, v)^2.
\]
(4)

This produces the approximation

\[
I(u + x, v + y) \approx I(u, v) + I_x(u, v)x + I_y(u, v)y.
\]
(5)

This produces the approximation

\[
S(x, y) = \sum_u \sum_v w(u, v) I_x(u, v)x + I_y(u, v)y)^2,
\]
which can be written in matrix form:

\[
S(x, y) \approx (x \ y) A (x \ y)^T,
\]
(7)

where \(A \) is the structure tensor.

\[
A = \sum_u \sum_v w(u, v) \begin{bmatrix}
I_x^2 & I_x I_y \\
I_x I_y & I_y^2
\end{bmatrix} = \begin{bmatrix}
\langle I_x^2 \rangle & \langle I_x I_y \rangle \\
\langle I_x I_y \rangle & \langle I_y^2 \rangle
\end{bmatrix}.
\]
(8)

This matrix is a Harris matrix, and angle brackets denote averaging (i.e. summation over \((u, v)\)). If a circular window \(w(u, v) \) (or circularly weighted window, such as a Gaussian) is used, then the response will be isotropic.

Harris and Stephens note that exact computation of the eigenvalues is computationally expensive, since it requires the computation of a square root, and instead suggest the following function \(M_c \), where \(k \) is a tunable sensitivity parameter:

\[
M_c = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2 = \text{det}(A) - k \text{trace}^2(A).
\]
(9)

Therefore, the algorithm does not have to actually compute the eigenvalue decomposition of the matrix \(A \) and instead it is sufficient to evaluate the determinant and trace of \(A \) to find corners, or rather interest points in general.

IV. SURF

To detect interest points, SURF uses an integer approximation of the determinant of Hessian blob detector, which can be computed with 3 integer operations using a precomputed integral image. Its feature descriptor is based on the sum of the Haar wavelet response around the point of interest. These can also be computed with the aid of the integral image.

\[
S(x, y) = \sum_{i=0}^{W} \sum_{j=0}^{H} I(i, j).
\]
(10)

The sum of the original image within a rectangle can be evaluated quickly using the integral image, requiring four evaluations at the corners of the rectangle.

SURF uses a blob detector based on the Hessian matrix to find points of interest. The determinant of the Hessian matrix is used as a measure of local change around the point and points are chosen where this determinant is maximal. Given a point \(p = (x, y) \) in an image \(I \), the Hessian matrix \(H(p, \sigma) \) at point \(p \) and scale \(\sigma \), is defined as follows:

\[
H(p, \sigma) = \begin{bmatrix}
L_{xx} & L_{xy} \\
L_{xy} & L_{yy}
\end{bmatrix},
\]
(11)

where \(L_{xx}(p, \sigma) \) etc. are the second-order derivatives of the grayscale image.
The box filter of size 9×9 is an approximation of a Gaussian with \(\sigma = 1.2 \) and represents the lowest level (highest spatial resolution) for blob-response maps.

V. SUM OF SQUARE OF DIFFERENCE FEATURE POINTS TRACKER

Sum of square difference was another matching technique where matching was done pixel-by-pixel or in other word, pixel-based matching. The concept of ‘sum of square difference matching algorithm’ is implemented left and right images. A template with suitable size was moved in the search window to locate and match its conjugate points. The size of the searching window must be larger than the template window. The template with suitable size must be smaller than the size of the search window (for example, template of 3 × 3 and search window of 7 × 7 pixels and lines). The equation for SSD matching algorithm can be expressed as:

\[
SSD = \sum (f_o(x + j) - f_i(x + j + d))^2
\]

where SSD is ‘sum of square difference’ value, \(f_o \) is template Grey-level matrix; \(f_i \) is search window in Greylevel matrix, \(x \) is height of template and \(j \) is width of template. The ‘sum of square difference’ is applied to determine the difference of data observed with the data tested. This was because the residual errors obtained from point selected could be calculated to determine the best fit. Sum square of difference method had become a powerful tool in image matching. Not only for determination of difference of points, the SSD method was capable of extinguishing the correlation between both data. The basic equation of ‘least square’ could be determined in Equation (12).

VI. INPUT DATA

As an input for testing efficiency of algorithms a pair of images was considered (Fig. 2).

For proper functioning of algorithms, this images must first be undistorted to prevent warping of objects(Fig. 3).

Here we can see a pair of undistorted images taken from a distance to the center of the image of 1.6 m and a basis of 10 cm.
VII. EIGENVALUE CORNER DETECTION WITH SSD POINT MATCHING

This pair of methods were considered the first. They showed great accuracy in feature points extraction and matching, which is perfect for relief reconstruction, although due to extremely slow working speed it was considered as unsuitable (Fig. 4).

![Fig. 4. Detected corners on the first image](image)

As we can see, the amount of detected corners on the first image is high (72316 points), which contributes to the accuracy of the algorithm but at the same time, the increased amount of points negatively influences speed of execution (Fig. 5).

![Fig. 5. Matched features](image)

As the principle of SSD matching algorithm is comparing every point of the first image to every point of second image in certain block it takes a while to handle this amount of points (Fig. 6).

![Fig. 6. Point cloud of reconstructed scene](image)

After the points triangulation, using DLT algorithm, scene relief is pretty accurate and the main objects of interest are distinct. Amount of points on this reconstruction is 10811 (Fig. 7).

![Fig. 7. Reprojection error graph](image)

After points triangulation, the reprojection errors of each point is considered, with this method having only 237 out of 10811 points having reprojection error more than 20 pixels, which is 2.2% (Fig. 8)!

![Fig. 8. Computed distances to 5 random points](image)

Distance is calculated as the mean of Z coordinates of points, so the mean distance to the objects of picture is 1.27 m, which is very close to the etalon distance with deviation of only 17 centimeters (Fig. 9).

The algorithm required 21.873 s to compute all data, which is unacceptable for a real-time height estimation. Main resource hog of the algorithm being PointTracker step function, which is the realization of SSD point matching as well as $\sim 5-7$ s where spent on plots and pictures.
To decrease working time, another method of feature points extraction was considered. Although, due to algorithm specifics it finds less points, it works considerably faster than Eigenvalue (Fig. 10).

Algorithm resulted in 758 matched points which is considerably lower than previous pair of algorithm, making this pair inferior in relief reconstruction task (Fig. 12).

Results of DLT reconstruction are not so distinct, although form of the objects can be estimated (Fig. 13).

Precision of this method is one of the highest, as points with reprojection error of over 20 is only 1 out of 758, which is 0.13%. This precision is highly valuable in estimation of height (Fig. 14).

Mean distance to the objects of the scene is 1.47, which is very close to the etalon of 1.6 m (Fig. 15).

Working time of this pair is almost two times lower than MinEigen+SSD, this is achieved by faster algorithm of feature points tracking as well as less amount of points to operate with for SSD algorithm. Previously considered the most resource inefficient function of PointTracker step in this pair takes less that a second to compute its results.
IX. SURF FEATURE POINT DETECTION AND SSD FEATURE MATCHING

To decrease working time, another method of feature points extraction and matching was considered. Although, due to algorithm specifics it finds less points, it works considerably faster than Eigenvalue. This method is very inefficient in terms of relief recovery, as it finds less matched points (Fig. 16).

The amount of matched points is lower than in any other method, that were investigated. That’s due to SURF being very sensitive to warping and brightness changes, even very small brightness fluctuation during photographing can lead to poor features matching (Fig. 18).

That being said, relief reconstruction is hard using SURF, as the matched points are the crucial part of triangulation. Points cloud is scattered and objects are indistinctive (Fig. 19).
Distance estimation is fairly accurate in this method as it deviates from etalon for 0.09 m, as estimation of distance can be made even with one matched point (Fig. 20).

In current situation, SURF showed itself as very efficient method for our purposes. In 877 matched points, 0 of them had reprojection error over 20 pixels (Fig. 21).

X. RECOMMENDATIONS AND CONCLUSIONS

This work introduces correlation stereoscope recognition of flight data. It has been shown the necessity of such system usage in UAV navigation complex structure. For collective use of correlation stereoscope recognition system, it is necessary to develop methods of joint information processing. It has been researched such methods as Harris corner detector, SURF, Mineigenvalue (for feature points extraction), SSD (for matching feature points) and DLT (for matched points triangulation and distance estimation). It has been also illustrated that they are suitable to work in real-time conditions. Three pairs of algorithms were investigated in terms of usability in real-time on-board system, for height estimation as well as relief reconstruction. On the one hand method of MinEigenvalues can be considered the best for relief reconstruction, as it returns the largest amount of matched points with fairly low reprojection errors. Objects on the reconstructed scene are distinct and relief is accurate. On the other hand, the operation time for this algorithm is too long for real-time work, also its height estimation error was the highest, approximately 17 cm.

It’s reasonable to consider Harris corner detection to be very efficient method for our system as it has decent accuracy for height estimation (error in less than 13 cm) as well as close enough relief reconstruction. It’s operation time is suitable for real-time calculations, which makes it the perfect fit.

After researching of all three methods, it is clear that the most overall effective method is SUR feature tracking with SSD points matching, as it showed itself as fast and reliable method of height estimation and overall surpassed Harris method in both height and relief estimation as well as time spent. It has been researched (Table I) such methods as Harris corner detector, SURF, Mineigenvalue (for feature points extraction), SSD (for matching feature points) and DLT (for matched points triangulation and distance estimation).

TABLE I

<table>
<thead>
<tr>
<th>Algorithm name</th>
<th>Working time (s)</th>
<th>Points tracked</th>
<th>Points matched</th>
<th>Reprojection errors over 20 pixels (%)</th>
<th>Deviation in distance estimation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinEigen</td>
<td>21.873</td>
<td>72316</td>
<td>10811</td>
<td>2.2</td>
<td>-0.17</td>
</tr>
<tr>
<td>Harris</td>
<td>4.647</td>
<td>1578</td>
<td>758</td>
<td>0.13</td>
<td>-0.13</td>
</tr>
<tr>
<td>SURF</td>
<td>4.329</td>
<td>2041</td>
<td>877</td>
<td>0</td>
<td>+0.09</td>
</tr>
</tbody>
</table>

REFERENCES

М. П. Мухина, М. И. Панарин. Алгоритм корреляционного стереоскопического распознавания

Рассмотрено корреляционное стереоскопическое распознавание. Разработано программное обеспечение, с помощью которого обрабатываются полетные данные, полученные с БПЛА. Проведено моделирование движения БПЛА с камерой на борту и получены фотографии, которые обрабатывались различными методами, в результате чего были сопоставлены особые точки и триангулированы для создания 3D-рельефа. Результаты исследования показали, что вероятность распознавания соответствует указанным уровням, даже если изображение искажено. Использование предложенного алгоритма корреляционного стереоскопического распознавания возможно для оценивания высоты в реальном времени и восстановления рельефа. Ключевые слова: выявление углов; метод Харриса; SURF; метод прямого линейного перетворения; КЛТ; восстановление рельефа; триангуляция; стереовидимость.

Мухина Марина Петровна. Кандидат технических наук, доцент. Учебно-научный институт информационно-диагностических систем, Национальный Авиационный Университет, Киев, Украина. Образование: Национальный авиационный университет, Киев, Украина, (2016). Направление научной деятельности: экстремальные системы управления. Количество публикаций: 2. E-mail: m_mukhina@inbox.ru

Панарин Михаил Игоревич. Бакалавр. Національний авіаційний університет, Київ, Україна. Образование: Національний авіаційний університет, Київ, Україна. Направление научной деятельности: обработка изображений, навигация и управление. Количество публикаций: 2. E-mail: michaelpanarin@inbox.ru