Astronomical School’s Report, 2012, Volume 8, Issue 2, Pages 119–128

https://doi.org/10.18372/2411-6602.08.2119
Download PDF
UDC 524.3-14

Solar stellar and substellar environment. III. Statistical bonds and distribution functions

Zakhozhay V.A.1, Babenko M.O.2

1Kharkiv V.N.Karazin National University, Ukraine
2Kherson State University, Ukraine

Abstract

Statistical connections between the main stellar and substellar characteristics, as a consequence of their computed physical evolutionary models are analyzed. The calculated differential distribution functions of the stellar and substellar astrophysical properties are considered. The analysis and graphs of calculated mass and radii spectra, functions of luminosity, masses, metallicity and angular diameters of nearest stars and substars are presented. The comparison with results of similar calculations for other samples of stars in the Galaxy are presented.

Keywords: stars; substars; determination of stellar physical characteristics

References

  1. Agekyan E.A. (1974). Teoriya veroyatnostey dlya astronomov i fizikov. M.: Nauka. 264 p.
  2. Vereschagin S.V., Chupina N.V. (1994). Spektr mass okolosolnechnykh okrestnostey i zvezdnoe skoplenie UMa. Astron. zhurn., 71(1), 72–77.
  3. Zakhozhay V.A. (1980). Funktsiya svetimosti i prostranstvennaya plotnost’ blizhayshikh zvezd. Astrometriya i astrofiz, 1980(42), 64–69.
  4. Zakhozhay V.A. (1987). Statisticheskike svoystva blizhayshikh zvezd: Dis. ... kand.fiz.-mat.nauk. L.: GAO AN SSSR. 206 p.
  5. Zakhozhay V.A. Statisticheskie svoystva zvezd i kratnykh sistem v oblasti 10 pk V sb.: Astronomo-geodezicheskie issledovaniya: Blizkie dvoynye i kratnye zvezdy, Sverdlovsk: UrGU, 1990, S.44–54.
  6. Zakhozhay V.A. (1994). Massy blizhayshikh zvezd. Kinem. i fiz.neb.tel., 10(2), 68–73.
  7. Zakhozhay V.A. (2000). Funktsiya mass zvezd Galaktiki. Kinem. i fiz. neb. tel., 16(2), 153–168.
  8. Zakhozhay V.A. (2002). Radiusy i spektry blizhayshikh zvezd. Kinem. i fiz. neb. tel., 18(6), 535–552.
  9. Zakhozhay V.A. (2007). Statisticheskie zakonomernosti v zvezdnykh sistemakh: Diss. ... dokt. fiz.-mat. nauk. Khar’kov: KHNU im. V.N.Karazina. 317 p.
  10. Zakhozhay V.A., Babenko M.A. (2012). Solar stellar and substellar environment. I. Location in the galaxy and catalogues. Astronomical School’s Report, 8(1), 13–21. https://doi.org/10.18372/2411-6602.08.1013
  11. Zakhozhay V.A., Babenko M.A. (2012). Solar stellar and substellar environment. II. Classification and determination of main characteristics. Astronomical School’s Report, 8(2), 108–118. https://doi.org/10.18372/2411-6602.08.2108
  12. Zakhozhay V.A., Shaparenko E.F. (1996). Metallichnosti blizkikh zvezd. Kinem. i fiz.neb.tel., 12(2), 20–29.
  13. Zakhozhay V.A., Shaparenko E.F. (1997). Funktsiya raspredeleniya metallichnosti blizkikh zvezd. Kinem. i fiz. neb. tel., 13(6), 63–66.
  14. Ishkhanov G.V. (1976). Funktsiya svetimosti zvezd umerennoy i slaboy svetimosti. Vestn. Leningr. un-ta., 1976(7), 151–153.
  15. Marochnik L.S., Suchkov A.A. (1984). Galaktika. M.: Nauka. 392 p.
  16. Parenago P.P. (1940). Issledovaniya, osnovannye na svodnom kataloge zvezdnykh parallaksov GAISH. Tr. gos. astron. in-ta im. P.K.Shternberga. – M., 1940. – 13., 59–114.
  17. Parenago P.P. (1954). Kurs zvezdnoy astronomii. M.: Gostekhizdat. 476 p.
  18. Pisarenko A.I., Yatsenko A.A., Zakhozhay V.A. (2007). Model’ evolyutsii subzvezdnykh ob’ektov. Astron. zhurn., 84(8), 675–684.
  19. Svechnikov M.A., Taydakova T.A. (1984). O zavisimosti massa-spektr dlya zvezd glavnoy posledovatel’nosti. Astron. zhurn., 61(1), 143–151.
  20. Skalo D.M. Spektr zvezdnykh mass V kn.: Protozvezdy i planety. T. 1, Pod red. T.Gerelsa, M.: Mir, 1982, S.295–320.
  21. Starikova G.A. (1960). Funktsiya svetimosti i tsveta zvezd. Astron. zhurn., 37(3), 476–491.
  22. Suchkov A.A. (1978). Galaktiki znakomye i zagadochnye. M.: Nauka. 192 p.
  23. Chandrasekar S. (1950). Vvedenie v uchenie o stroenii zvezd. M.: IL. 476 p.
  24. Shatsova R.B. (1952). Vystuplenie na soveschanii po voprosam kosmogonii. Trudy vtorogo soveschaniya po voprosam kosmogonii (19–22 maya 1952 g.). – M.: izd. AN SSSR, 1953., 567–571.
  25. Allen P.R., Koerner D.W., Reid I.N., et al. (2005). The Substellar Mass Function: A Bayesian Approach. Astrophys. J., 385–397. https://doi.org/10.1086/429548
  26. Astrophysics Data System, URL: http://adsabs.harvard.edu
  27. Bessel M.S., Stringfellow G.S. (1993). The faint end of the stellar luminosity function. Ann. Rev. Astron. Astrophys., 31, 433–471. https://doi.org/10.1146/annurev.aa.31.090193.002245
  28. Bochanski J.J. (2010). Low-mass stars in the Sloan Digital Sky Survey: Galactic structure, kinematics, and the luminosity function. arXiv: 1012.1856v1 [astro-ph.SR] 8 Dec 2010. .
  29. Burrows A., Hubbard W.B., Lunine J.I., Liebert J. (2001). The Theory of Brown Dwarfs and Extrasolar Giant Planets. Rev. Mod. Phys., 73, 719–765. https://doi.org/10.1103/revmodphys.73.719
  30. Burrows A., Liebert J. (1993). The science of brown dwarfs. Rev. Mod. Phys., 65(2), 301–336. https://doi.org/10.1103/revmodphys.65.301
  31. Cayrel de Strobel G. (1978). The intrinsic width of the zero age main sequence. Astronomical papers dedicated to Bengt Stromgren; Proceedings of the Symposium, Copenhagen, Denmark, May 30-June 1, 1978. – Copenhagen, Copenhagen Univ. Observ., 1978., 205–222.
  32. Cervino M., Mas-Hesse J.M. (1994). Metallicity effects in star-forming regions. Astron. Astrophys., 284(3), 749–763.
  33. Chabrier G., Baraffe I. (2000). Theory of Low-Mass Stars and Substellar Objects. Ann. Rev. Astron. Astrophys., 38, 337–372. https://doi.org/10.1146/annurev.astro.38.1.337
  34. Clayton D.D. (1968). Principles of Stellar Evolution and Nucleosynthesis. New York: McGraw-Hill. 612 p.
  35. De Boer K.S., Seggewiss W. (2008). Stars and Stellar Evolution. Les Ulis: EDP Sci. 333 p.
  36. Demircan O., Kahraman G. (1991). Stellar mass-luminosity and mass-radius relations. Astrophys. Sp. Sci., 181(2), 313–322. https://doi.org/10.1007/bf00639097
  37. Gliese W. (1969). Catalogue of nearby stars. Karlsruhe: Braun. 118 p.
  38. Gliese W. (1981). Smethell’s stars nearer than 25 parsecs. Astron. Astrophys. Suppl., 44, 131–135.
  39. Gliese W., Jahreiss H. (1979). Nearby star data published 1969–1978. Astron. Astrophys. Suppl., 38, 423–448.
  40. Gould A., Bahcall J.N., Flynn C. (1996). Disk M dwarf luminosity function from Hubble space telescope star counts. Astrophys. J., 465(2), 759–768. https://doi.org/10.1086/177460
  41. Guseva N.G., Kolesnic L.N., Metreveli M.D. (1983). Stellar statistische Untersuchungen in der Sonnengebung. Astron. Nachr..
  42. Henry T.J., McCarthy D.W. (1990). A systematic search for brown dwarfs orbiting nearby stars. Astrophys. J., 350(1), 334–347. https://doi.org/10.1086/168387
  43. Hubbard W.B. (1984). Planetary Interiors. – New York: Van Nostrand Reinhold. 334 p.
  44. Jahreiss H., Wielen R. (1974). Leuchkraftfunktion und Massendichte der Sonnenaben Sterne. Mitt. Astr. Gess..
  45. Jet Propulsion Laboratory Solar System Dynamics, URL: http://ssd.jpl.nasa.gov
  46. Kapteyn J.O. (1910). The luminosity curve. Astron. Nachr., 183, 312–331.
  47. Kapteyn J.C., Van Rhijn P.J. (1920). On the Distribution of the Stars in Space Especially in the High Galactic Latitudes. Astrophys. J., 52, 23–38. https://doi.org/10.1086/142556
  48. Karetnikov V.G. (1991). Relationships Between the Mass Radius Temperature and Luminosity of Stars in Eclipsing Binary Systems of Different Types. Sov. Astron., 35(4), 437–440.
  49. Kroupa P. (2002). The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems. Science, 82–91. https://doi.org/10.1126/science.1067524
  50. Kroupa P., Tout C.A., Gilmore G. (1993). The distribution of low-mass stars in the Galactic disk. Mon. Not. Roy. Astron. Soc., 262, 545–587. https://doi.org/10.1093/mnras/262.3.545
  51. Kroupa P., Weidner C. (2005). Variations of the IMF. Astrophys. Sp. Sci. Lib., 327, 175–188.
  52. Kuijken K. Dark matter in the Milky Way. In Stellar Populations, Eds. P.C. van der Kruit and G.Gilmore, IAU. Printed in the Netherlands, 1995, P.195–204.
  53. Luyten W.J. (1938). On distribution of absolute magnitudes in the vicinity of the Sun. Mon. Notic. Roy. Astron. Soc., 98(8), 677–680. https://doi.org/10.1093/mnras/98.8.677
  54. Luyten W.J. (1939). The stars of large proper motion and the luminosity function. Publ. Obs. Minnesota, II., 1939(7), 121–159.
  55. Luyten W.J. (1968). A new determination of the luminosity function. Mon. Notic. Roy. Astron. Soc., 139, 221–224.
  56. McCuskey S.W. (1965). The stellar luminosity function. Vistas in astronomy, 7, 141–171. https://doi.org/10.1016/0083-6656(66)90007-9
  57. National Space Science Data Center, URL: http://nssdc.gsfc.nasa.gov
  58. Nelson L.A., Rappoport S.A., Joss P.C. (1986). The evolution of very low mass stars. Astrophys. J., 311(1), 226–240.
  59. Reid I.N., Gizis J.E. (1997). Low-mass binaries and the stellar luminosity function. Astron. J., 113(6), 2246–2259. https://doi.org/10.1086/118436
  60. Russell H.N. (1927). On the Relations Between Period, Luminosity, and Spectrum among Cepheids. Astrophys. J., 66, 122–134. https://doi.org/10.1086/143072
  61. Salaris M., Cassisi S. (2005). Evolution of Stars and Stellar Populations. England: John Wiley & Sons Ltd. 389 p.
  62. Salpeter E.E. (1955). The Luminosity Function and Stellar Evolution. Astrophys. J., 121, 161–167. https://doi.org/10.1086/145971
  63. Seares F.H. (1924). The Form of the Luminosity Function. Astrophys. J., 59, 310–338.
  64. Stevenson D.J. (1978). Brown and black dwarfs – Their structure, evolution and contribution to the missing mass. Publ. Astron. Soc. Au., 3, 227–228. https://doi.org/10.1017/s1323358000024619
  65. Stevenson D.J. High mass planets and low mass stars. Astrophysics of brown dwarfs. Proc. Second George Mason Fall Workshop in Astrophysics, Fairfax, Va., USA, 14–15 October 1985, Cambridge: Cambridge Univ. Press, 1986, P.218–232.
  66. Stevenson D.J. (1991). The search for brown dwarfs. Ann. Rev. Astron. Astrophys., 29, 163–193. https://doi.org/10.1146/annurev.aa.29.090191.001115
  67. Stobie R.S., Ishida K., Peacock J.A. (1989). Distance errors and the stellar luminosity function. Mon. Not. Roy. Astron. Soc., 238(2), 709–727. https://doi.org/10.1093/mnras/238.3.709
  68. The Centre de Donnees astronomiques de Strasbourg, URL: http://cdsweb.u-strasbg.fr.
  69. The Extrasolar Planets Encyclopaedia, URL: http://exoplanet.eu
  70. Tinsley B.M. (1980). Evolutions of the stars and gas in galaxies. Fund. Cosm. Phys., 5(4), 287–388.
  71. Udry S., Eggenberger A., Mayor M., et al. (2004). Planets in multiple-star systems: properties and detections. RevMexAA (Serie de Conferencias), 21, 207–214.
  72. Van den Hoek L.B. (1997). On the chemical and spectro-photometric evolution of nearby galaxies. – Astron. Institute ‘Anton Pannekoek’. – Amsterdam, the Netherlands. 292 p.
  73. Vogt H. (1928). Die Leuchtkraft-Masse-Beziehung der Sterne. Astron. Nachr., 233, 13–14. https://doi.org/10.1002/asna.19282330104
  74. Zakhozhaj V.A. Catalogue of stars within ten parsecs of the Sun. 1996, URL: http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=V/101.
  75. Zakhozhaj V.A. Astrometrical method of searching for cool satellites of stars. Results and perspectives In: Extension and connection of reference frames using ground based CCD technique, Nikolaev, 2001, P.274–283.
  76. Zakhozhay V.A. (2008). Evidence of recent changes in the local Galactic IMF of stars and substars. Astrophys. Sp. Sci., 315, 13–19. https://doi.org/10.1007/s10509-008-9782-y
  77. Zapolsky H.S., Salpeter E.E. (1969). The mass-radius relation for could spheres of low mass. Astrophys. J., 158, 809–813. https://doi.org/10.1086/150240
  78. Zuckerman B., Song I. (2009). The Minimum Jeans Mass, Brown Dwarf Companion IMF, and Predictions for Detection of Y-type Dwarfs. Astron. Astrophys., 1149–1154. https://doi.org/10.1051/0004-6361:200810038

Download PDF