Astronomical School’s Report, 2011, Volume 7, Issue 1, Pages 117–132

https://doi.org/10.18372/2411-6602.07.1117
Download PDF
UDC 523.4

Features of morphology and geology of surface of Jupiter satellite Europe

Vid'machenko A.P., Morozhenko A.V., Klyanchin A.I.

Main Astronomical Observatory NAS of Ukraine

Abstract

Comparison of large-scale images of “Vojager-2” and “Galileo” did not find out no noticeable changes on the surface of Europe. But “Galileo” images of Europe with a high spatial resolution was changed our picture of character and nature of its surface. A surface is an icy shell, covered by cracks and by ice-drifts. Under a comparatively thin shell, possibly, there is an ocean of liquid water in to a few ten of kilometers depth. Very small amount of shock craters specifies on relative youth of surface of Europe and, possibly, on its geological activity and now. The basic geological features of satellite are selected taking into account likeness of form, structure, color, illuminations etc. of Europe surfaces and other known types of surface: large plains regions, areas of cracks (lines, bands) and mountain backbones (linea, lineaes), areas with chaotic relief (chaos, chaoses), craters and cycloid cracks (flexus). Presumably, global network of lines – it caused by tectonic processes in icy shell cracks, after filled the frozen dark matter of orange–red color. Correlation of stratum features with albedo allows to suppose that its young areas, which were less changed by subsequent endogenous and exogenous processes which would clean them, have less albedo. Classification of craters is based on the clearness of scopes of the thrown out breeds. Tracks of shots can be seen on the presence of concentric features; some have well visible edges and shock texture; some have rays. On the Europe surface 41 craters with diameters a 2–50 km are found. In 2000 was found out a large crater which can be the result of collision of asteroid with Europe in the past. Size of external structure of Tayr object (diameter – 149 km) far more than size of its crater. This morphological detail appeared so original, that for it (and yet for 2–3 to it similar) it was necessary to offer the special name: large circular structures. If to examine satellite on the whole, to our opinion, it is necessary to talk about another shock very large circular structure occupying practically all of Europe hemisphere with a center with the co-ordinates of 20S, 203W.

Keywords: morphology and geology of surface of Jupiter's satellite Europe

References

  1. Berlin A.B., Esepkina N.A., Zverev Yu.K. (1976). Nablyudeniya galileevykh sputnikov Yupitera na Ratan-600. Pis’ma v Astron. zhurn., 405–409.
  2. Anderson J.D., Schubert G., Jacobsen R.A., et al. (1998). Europa's differentiated internal structure: Inferences from four Galileo encounters. Science, 281, 2019–2022. https://doi.org/10.1126/science.281.5385.2019
  3. Belton M.J.S., Head J. W. III, Ingersoll A.P., et al. (1996). Galileo's first images of Jupiter and the Galilean satellites. Science, 274, 377–385.
  4. Berge G.L., Nuhleman D.O. (1975). Callisto – Disk temperature at 3.71-centimeter wavelength. Science, 187, 441–443. https://doi.org/10.1126/science.187.4175.441
  5. Campbell D.B., Chandler J.F., Pettengill G.H., Shapiro I.I. (1977). Galilean satellites of Jupiter – 12.6-centimeter radar observations. Science, 196, 650–653. https://doi.org/10.1126/science.196.4290.650
  6. Campbell D.B., Chandler J.F., Ostro S.J., et al. (1978). Galilean satellites – 1976 radar results. Icarus, 34, 254–267. https://doi.org/10.1016/0019-1035(78)90166-5
  7. Carr M.H., Belton M.J.S., Chapman C.R., et al. (1998). New evidence for a global ocean on Europa. Nature, 391, 363–365.
  8. Chapman C.R., Merline W.J., Bierhaus B., et al. (1998). Cratering in the Jovian system: Intersatellite comparisons. Lunar Planet. Sci. Conf..
  9. Chuang F.C., Kadel S.D., Klemaszewski J.E., et al. (1999). Europa: Geomorphologic mapping and stereo analysis of chaos regions southeast of the Tyre multi-ringed impact structure. Eos Trans. AGU, 79..
  10. Collins G.C., Denk T., Fagents S., et al. (1999). Does Europa have a subsurface ocean? Evaluation of the geological evidence. Journal of Gephysical research, 104(El0), 24,015-24,055.
  11. De Pater I., Brown R.A., Jaffe W.J., Berge G.L. (1982). Radio emission from Io. Astrophysical Journal, 261, 396–401. https://doi.org/10.1086/160350
  12. De Pater I., Brown R.A., Dickel J.R. (1984). VLA observations of the Galilean satellites. Icarus, 57(1), 93–101. https://doi.org/10.1016/0019-1035(84)90011-3
  13. Deschamps F., Sotin C. (1998). Thermal convection in the outer ice I shell of icy satellites, in The Jovian System After Galileo: The Saturnian System Before Cassini-Huygens. Lab. de Geophys. et Planttol..
  14. Figueredo P.H., Greeley R. (2004). Resurfacing history of Europa from pole-to-pole geological mapping. Icarus, 167(1), 287–312. https://doi.org/10.1016/j.icarus.2003.09.016
  15. Figueredo P.H., Greeley R. The emerging resurfacing history of Europa from pole-to-pole geologic mapping. In: Proc. Lunar Planet. Sci. Conf. 2003, 34th, Lunar and Planetary Institute, Houston. Abstract 1017.
  16. Forrest W.J., Houck J.R., McCarthy J.F. (1980). The 16- to 38-micron spectrum of Callisto. Icarus, 41(2), 340–342. https://doi.org/10.1016/0019-1035(80)90218-3
  17. Geissler P.E., Greenberg, R., Hoppa G., et al. (1998). A recently active lineament on Europa? Lunar Planet. Sci. Conf. 1998. – XXIX. – Abstract 1904. .
  18. Giese B.; Oberst J., Roatsch T., et al. (1998). The Local Topography of Uruk Sulcus and Galileo Regio Obtained from Stereo Images. Icarus, 135(2), 303–316. https://doi.org/10.1006/icar.1998.5967
  19. Goldsby D.L., Kohlstedt D.L. (1997). Flow of Ice I by dislocation, grain boundary sliding, and diffusion processes. Abstract. – Lunar Planet. Sci. Conf., 429–430.
  20. Goldsby D.L., Kohlstedt D.L. (1997). Grain boundary sliding in fine-grained ice I. Scr. Mater., 37, 1399–1406. https://doi.org/10.1016/s1359-6462(97)00246-7
  21. Goldstein R.M., Green R.R. (1980). Ganymede – Radar surface characteristics. Science, 207, 179–180.
  22. Greeley R., Coon M., Sullivan R., et al. (1998). Terrestrial sea ice processes: Considerations for Europa. Icarus, 135(1), 25–40. https://doi.org/10.1006/icar.1998.5977
  23. Greeley R., Sullivan R., Klemaszewski J., et al. (1998). Europa: Initial Galileo Geological Observations. Icarus. 1998. – 135, № 1., 4–24. https://doi.org/10.1006/icar.1998.5969
  24. Greenberg R. (2004). The evil twin of Agenor: tectonic convergence on Europa. Icarus, 167(2), 313–319. https://doi.org/10.1016/j.icarus.2003.09.025
  25. Greenberg R., Geissler P., Hoppa G., et al. (2002). Tidal-Tectonic Processes and Their IMPLICATIONS for the Character of Europa's Icy Crust. Reviews of Geophysics, 1. https://doi.org/10.1029/2000rg000096
  26. Greenberg R., Hoppa G., Tufts R., Geissler P. (1998). Chaos regions: Widespread melt-through to the surface of Europa? Bull. Am. Astron. Sac., 30, 1086.
  27. Greenberg R., Geissler P.E., Hoppa G., et al. (1998). Tectonic processes on Europa: Tidal stresses, mechanical response, and visible features. Icarus, 135(1), 64–78. https://doi.org/10.1006/icar.1998.5986
  28. Hansen O.L. (1972). Infrared Observations of the Galilean Satellites. Bulletin of the American Astronomical Society, 4, 367.
  29. Hansen O.L. (1973). Ten-Micron Eclipse Observations of Io, Europa, and Ganymede. Icarus, 18(1), 237–241. https://doi.org/10.1016/0019-1035(73)90208-x
  30. Johnson T.V., Mosher J.A.; Soderblom L.A. (1983). Galilean satellite multispectral data base production. In NASA. Washington Rept. of Planetary Geology Program., 259–260.
  31. Kargel J.S. (1991). Brine volcanism and the interior structures of asteroids and icy satellites. Icarus, 94(2), 368–390. https://doi.org/10.1016/0019-1035(91)90235-l
  32. Kivelson M.G., Khurana K.K., Russell C.T., et al. (2000). Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science, 289, 1340–1343. https://doi.org/10.1126/science.289.5483.1340
  33. Leith A.C., McKinnon W.B. (1996). Is there evidence for polar wander on Europa? Icarus. 1996. – 120, № 2., 387–398. https://doi.org/10.1006/icar.1996.0058
  34. Lucchitta B.K., Soderblom L.A. The geology of Europa. In: Morrison, D. (Ed.), Satellites of Jupiter. Univ. of Arizona Press, Tucson, AZ, 1982, P.521–555.
  35. McCord T.B., Hansen G.B., Matson D., et al. (1999). Hydrated salt minerals on Europa's surface from the Galileo near-infrared mapping spectrometer (NIMS) investigationHydrated salt minerals on Europa's surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J. Geophys. Res., 104, 11827–11851. https://doi.org/10.1029/1999je900005
  36. Moore J.M., Asphaug E., Belton M.J.S., et al. (2001). Impact Features on Europa: Results of the Galileo Europa Mission (GEM). Icarus, 93–111. https://doi.org/10.1006/icar.2000.6558
  37. Morrison D., Cruikshank D.P., Murphy R.E. (1972). Temperatures of Titan and Galilean satellites at 20 microns. Astrophys. J., 173(3, Pt2), L143-L146. https://doi.org/10.1086/180934
  38. Nimmo F., Pappalardo R.T., Giese B. (2003). On the origins of band topography, Europa. Icarus, 166(1), 21–32. https://doi.org/10.1016/j.icarus.2003.08.002
  39. Ojakangas G.W., Stevenson D.J. (1989). Polar wander of an ice shell on Europa. Icarus, 81(1), 242–270. https://doi.org/10.1016/0019-1035(89)90053-5
  40. Ojakangas G.W., Stevenson D.J. (1998). Thermal state of an ice shell on Europa. Icarus, 81(1), 220–241. https://doi.org/10.1016/0019-1035(89)90052-3
  41. Ostro S.J., Campbell D.B., Pettengill G.H., Shapiro I.I. (1980). Radar observations of the icy Galilean satellites. Icarus, 44(2), 431–440. https://doi.org/10.1016/0019-1035(80)90035-4
  42. Pappalardo R.T., Belton M.J.S., Breneman H.H., et al. (1999). Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res., 104(E10), 24015–24055. https://doi.org/10.1029/1998je000628
  43. Pappalardo R.T., Sullivan R.J. (1996). Evidence for separation across a gray band on Europa. Icarus, 123(2), 557–567. https://doi.org/10.1006/icar.1996.0178
  44. Pauliny-Toth I.I.K., Witzel A., Preuss E. (1974). Measurements of the flux density of weak radio sources at frequencies of 2.7 and 10.7 GHz. Astronomy and Astrophysics, 35(3), 421–428.
  45. Pauliny-Toth I.I.K., Witzel A., Gorgolewski S. (1977). Observations of Ganymede and Callisto at 1.3 CM wavelength. Astronomy and Astrophysics, 58(3), L27-L28.
  46. Phillips C.B., McEwen A.S., Hoppa G.V., et al. (1998). The search for active resurfacing on Europa and Io. Bull. Am. Astron. Soc., 30, 1085.
  47. Prockter L.M., Antman A., Pappalardo R.T., et al. (1999). Europa: stratigraphy and geologic history of an anti-jovian region from Galileo E14 SSI data. J. Geophys. Res., 104, 16531–16540. https://doi.org/10.1029/1998je001015
  48. Prockter L.M., Head J.W., Pappalardo R.T., et al. (1999). Geological mapping of central Agenor Linea, Europa (212°–226°). Lunar Planet. Sci. Conf..
  49. Prockter L.M., Head J.W., Pappalardo R.T., et al. (2002). Morphology of Europan bands at high resolution: a mid-ocean ridge-type rift mechanism. J. Geophys. Res.. https://doi.org/10.1029/2000je001458
  50. Prockter LM., Pappalardo R.T., Sullivan R., et al. (1999). Morphology and evolution of Europan bands: Investigation of a seafloor spreading analog. Lunar Planet. Sci. Conf..
  51. Schenk P.M., McKinnon W.B. (1989). Fault offsets and lateral crustal movementon Europa: Evidence for a mobile ice shell. Icarus, 79(1), 75–100. https://doi.org/10.1016/0019-1035(89)90109-7
  52. Schilling N., Neubauer F.M., Saur J. (2008). Influence of the internally induced magnetic field on the plasma interaction of Europa. J. Geophys. Res., 3203–3206.
  53. Schubert G., Spohn T., Reynolds R.T. Thermal histories, compositions, and internal structures of the moons of the Solar System, in Satellites. (Edited by J. A. Bums and M. S. Matthews), 1986, Univ. of Ariz. Press, Tucson, P.224–292.
  54. Sinton W.M. (1981). The thermal emission spectrum of Io and a determination of the heat flux from its hot spots. Journal of Geophysical Research, 86, 3122–3128. https://doi.org/10.1029/jb086ib04p03122
  55. Spaun N.A., Head J.W., Collins G.C., et al. (1998). Conamara Chaos Region, Europa: Reconstruction of mobile polygonal ice blocks. Geophys. Res. Lett., 25, 4277–4280. https://doi.org/10.1029/1998gl900176
  56. Squyres S.W., Reynolds R.T., Cassen P., Peale S.J. (1983). Liquid water and active resurfacing on Europa. Nature, 301, 225–226. https://doi.org/10.1038/301225a0
  57. Sullivan R., Greeley R., Homan K., et al. (1998). Episodic plate separation infill on the surand fracture face of Europa. Nature, 391, 371–372. https://doi.org/10.1038/34874
  58. Thomas P.J., Schubert G. (1986). Crater relaxation as a probe of Europa's interior. Proc. Lunar Planet. Sci. Conf. 16th, Part 2. J. Geophys. Res. 1986. – 91, suppl., D453-D459. https://doi.org/10.1029/jb091ib04p0d453
  59. Tiscareno M.S., Geissler P.E. (2003). Can redistribution of material by sputtering explain the hemispheric dichotomy of Europa? Icarus, 161(1), 90–101. https://doi.org/10.1016/s0019-1035(02)00023-4
  60. Tufts B. R., Greenberg R., Geissler P., et al. (1997). Crustal displacement features on Europa. Geol. Soc. Am..
  61. Verbiscer A., Veverka J. (1990). Scattering properties of natural snow and frost: Comparison with icy satellite photometry. Icarus, 88(2), 418–428. https://doi.org/10.1016/0019-1035(90)90092-n
  62. Williams K.K., Greeley R. (1998). Estimates of ice thickness in the Conamara Chaos region of Europa. Geophys. Res. Lett., 25, 4273–4276. https://doi.org/10.1029/1998gl900144
  63. Yoder C.F., Sjogren W.L. (1996). Tides on Europa, in Europa Ocean. Capistrano Conf. 5 San Juan Capistrano Res. Inst., 89–90.
  64. Zahnle K., Dones L., Levison H.F. (1998). Cratering rates on the Galilean satellites. Icarus, 136(1), 202–222. https://doi.org/10.1006/icar.1998.6015

Download PDF