Astronomical School’s Report, 2011, Volume 7, Issue 1, Pages 11–15

https://doi.org/10.18372/2411-6602.07.1011
Download PDF
UDC 523.68-35

Behavior of metal-containing species during entries of meteoroids into atmospheres of Mars, Jupiter, and Titan

Berezhnoy A.A.

Sternberg Astronomical Institute, Moscow

Abstract

Chemical composition of impact-produced clouds during meteor events on Mars, Jupiter, and Titan is studied. The intensities of brightest atomic lines of meteoroid origin of Martian and Titan's bolides are comparable to that of Earth's bolides because in all these atmospheres abundances of metal monoxides, atoms and ions are comparable while the electronic density is determined by the matter of meteoroid origin. The most intensive lines in visible spectra of Martian and Titan's meteors are lines of atoms and ions of Na, Fe, Mg, and Ca. In spectra of Jupiter's superbolides the intensity of lines of atoms is higher than that of ions.

Keywords: meteor events in atmospheres of Mars, Jupiter, and Titan; intensity of spectral lines of meteoroid origin

References

  1. Pätzold M., Tellmann S., Häusler B., et al. (2005). A sporadic third layer in the ionosphere of Mars. Science, 310, 837–839. https://doi.org/10.1126/science.1117755
  2. Whalley C.L., Plane J.M.C. (2010). Meteoric ion layers in the Martian atmosphere. Faraday Discussion, 147, 349–368. https://doi.org/10.1039/c003726e
  3. Molina-Cuberos J.G., López-Moreno J.J., Arnold F. (2008). Meteoric Layers in Planetary Atmospheres. Space Science Reviews, 175–191. https://doi.org/10.1007/s11214-008-9340-5
  4. Petrie S. (2004). Products of meteoric metal ion chemistry within planetary atmospheres. 1. Mg+ at Titan. Icarus, 199–209. https://doi.org/10.1016/j.icarus.2004.04.021
  5. Ip W-H. (1990). Meteoroid ablation processes in Titan's atmosphere. Nature, 345, 511–512. https://doi.org/10.1038/345511a0
  6. Selsis F., Lemon M.T., Vaubaillon J., Bell J.F. (2005). Extraterrestrial meteors: a Martian meteor and its parent comet. Nature, 435, 581–581. https://doi.org/10.1038/435581a
  7. Hueso R., Wesley A., Go C., et al. (2010). First Earth-based detection of a superbolide on Jupiter. Astrophys. J. Lett., L129-L133. https://doi.org/10.1088/2041-8205/721/2/l129
  8. Berezhnoy A.A., Borovička J. (2010). Formation of molecules in bright meteors. Icarus. https://doi.org/10.1016/j.icarus.2010.06.036
  9. Yelle R.V. (1991). Non-LTE models of Titan's upper atmosphere. Astrophys. J., 383, 380–400. https://doi.org/10.1086/170796
  10. Irwin P.G.J. (1993). Cloud structure and composition of Jupiter's atmosphere. Surveys in Geophysics. https://doi.org/10.1023/a:1006662811248
  11. Lodders K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 1220–1247. https://doi.org/10.1086/375492
  12. Borovička J. (1993). A fireball spectrum analysis. Astron. Astrophys., 279, 627–645.
  13. Gurvich L.V., Alcock C.B., Veyts I.V., et al. Thermodynamic properties of individual substances, 4th edition in 5 volumes, Hemisphere Pub. Co., New York, 1989.
  14. Borovička J., Koten P., Spurný P., et al. (2005). A survey of meteor spectra and orbits: evidence for three populations of Na-free meteoroids. Icarus, 174, 15–30. https://doi.org/10.1016/j.icarus.2004.09.011

Download PDF