Astronomical School’s Report, 2016, Volume 12, Issue 1, Pages 67–71

https://doi.org/10.18372/2411-6602.12.1067
Download PDF
UDC 524.386-87

The study of exoplanets and protoplanetary discs in the Main astronomical observatory of NAS of Ukraine

Kuznyetsova Yu.1, Krushevska V.N.1, Zakhozhay O.V.1, 2, Matsiaka O.M.3, Vidmachenko A.P.1, Shliakhetskaya Ya.O.1, Andreev M.V.1, 4, Romanyuk Ya.O.1

1Main Astronomical Observatory NAS of Ukraine
2Max Planck Institute for Astronomy, Heidelberg, Germany
3Queensland University of Technology, School of Mathematical Sciences, Brisbane
4International Center of Astronomical, Medical and Ecological Research, Ukraine

Abstract

Long-term spectral and photometric observations of transit and nontransit exoplanet systems are carried out in MAO NAS of Ukraine. On the base of obtained data we study the influence of exoplanets on chromospherical activity of the host stars, model the light curves, calculate exoplanet system's parameters and search planets in eclipsing binary star's systems. In the field of protoplanetary disc researches it was developed a new algorithm for calculation of the energy distribution in spectra of systems containing a spherical central source and a surrounding protoplanetary disc.

Keywords: exoplanets; transits; timing; protoplanetary discs

References

  1. Ruzmaykina T.V. (1981). Uglovoy moment protozvezd, porozhdayuschikh protoplanetnye diski. Pis’ma v Astron. zhurn., 7, 188–190.
  2. Safronov V.S. (1969). Evolyutsiya doplanetnogo oblaka i obrazovanie Zemli i planet. M.: Nauka. 244 p.
  3. Safronov V.S., Ruzmaykina T.V. (1982). O perenose momenta kolichestva dvizheniya i akkumulyatsii tverdykh tel v solnechnoy tumannosti. Protozvezdy i planety / pod red. T. Gerelsa., 2, 623–644.
  4. Shliakhetska Ya.O., Kuznyetsova Yu.G., Vidmachenko A.P., Krushevska V.N. (2014). Variability of spectral lines of extrasolar system HD189733 during a transit. Astronomical School’s Report, 10(3), 147–151. https://doi.org/10.18372/2411-6602.10.2147
  5. Kuznyetsova Yu., Shliakhetskaya Y., Matsiaka O. et al. (2015). Application of transit timing variation method (TTV) to exoplanet system TrES-3. Astronomical School’s Report, 11(1), 48–52. https://doi.org/10.18372/2411-6602.11.1048
  6. Gimenez A. (2006). Equations for the analysis of the light curves of extra-solar planetary transits. The Astrophysical Journal, 2006(450), 1231–1237. https://doi.org/10.1051/0004-6361:20054445
  7. Kopal Z. Language of the stars: A Discourse on the theory of the light changes of eclipsing variables. Netherlands: Springer Netherlands, 1979.
  8. Krushevska V., Kuznyetsova Yu., Matsiaka O., et al. (2014). Determination of parameters of transit exoplanets, using data obtained at the small telescopes. Contributions of the Astronomical Observatory Skalnaté Pleso (Proceedings), 43(3), 458–458.
  9. Kuznyetsova Yu., Krushevska V., Andreev M., et al. (2014). Photometric researches of chromospheric activity variations for star systems with exoplanets using small telescopes. Contributions of the Astronomical Observatory Skalnaté Pleso, 43(3), 408–408.
  10. Pribulla T., Vaňko M., Ammler-von Eiff M., et al. (2012). The Dwarf project: Eclipsing binaries – precise clocks to discover exoplanets. Astronomische Nachrichten, 754. https://doi.org/10.1002/asna.201211722
  11. Scholz A., Jayawardhana R., Wood K., et al. (2007). Evolution of Brown Dwarf Disks: A SPITZER Survey in Upper Scorpius. Astrophys. J., 660, 1517–1531. https://doi.org/10.1086/513066
  12. Zakhozhay O.V. (2011). Spectral energy distribution simulations for substars with gapless disks. Radio Physics and Radio Astronomy, 2(2 – R.125–132). https://doi.org/10.1615/radiophysicsradioastronomy.v2.i2.50
  13. Zakhozhay O.V. (2011). Spectral energy distribution simulations for substars with disks having inner holes. Radio Physics and Radio Astronomy, 2(3 – R.211–220). https://doi.org/10.1615/radiophysicsradioastronomy.v2.i3.30
  14. Zakhozhay V.A., Zakhozhay O.V., Vidmachenko A.P. (2011). Peculiarities of simulation of thin flat discs with central objects in accordance with their spatial location. Kinematics and Physics of Celestial Bodies, 27(3), 140–153. https://doi.org/10.3103/s0884591311030068
  15. Zakhozhay O.V., del Burgo C., Zakhozhay V.A. (2015). Geometry of highly inclined protoplanetary disks. Advances in Astronomy and Space Physics, 5, 33–38. https://doi.org/10.17721/2227-1481.5.33-38

Download PDF