Astronomical School’s Report, 2015, Volume 11, Issue 1, Pages 1–14

https://doi.org/10.18372/2411-6602.11.1001
Download PDF
UDC 523.4

Seasons on Saturn. I. Changes in reflecting characteristics of the atmosphere at 1964–2012

Vidmachenko A.P.

Main Astronomical Observatory NAS of Ukraine

Abstract

Due to considerable tilting of the equator to the orbital plane, presence of rings and elongation of the orbit around the Sun, Saturn is strongly affected by seasonal changes in the solar radiation influx. Such change of the mode of irradiation of Saturn's atmosphere should affect physical properties and optical characteristics of the cloud cover and/or haze above the clouds of the planet, as well as on the vertical structure of the atmosphere at different latitudes. Once in 14,7 terrestrial years we have the equality of conditions of insolation for both hemispheres, when the planet's rings are visible edge-on to a terrestrial observer. Therefore, these moments are interest for comparative study of possible differences in atmospheric characteristics of the northern and southern hemispheres. In recent years, possibilities for such observations were in 1966, 1980, 1995 and 2009. Using the observational data on the distribution of reflective characteristics of the atmosphere on the visible planetary disk, we have compared the results of calculations in the framework of a two-layer model of Saturn's atmosphere for above moments of equinoxes. It was found that in moments of equinox in 1966, 1980 and 1995 for spring hemisphere, which had just emerged from the rings shadow, the planetary latitudinal belts differ significantly from the other zones by the values of scattering component of the optical thickness τc of gas layer above the clouds, the volume concentration of aerosol cloud n, and imaginary part of refractive index ni of cloud particles. But at the time of the equinox in 2009, in the spring hemisphere the expected changes of reflective and absorptive characteristics – did not happen. There methane absorption remained at the same high level and does not form any high-altitude haze and/or rarefied cloud layer. Because they have the photochemical nature, we can assume an insufficient amount of incoming energy into the atmosphere for the possibility of the formation a photochemical aerosol layer in the lower stratosphere and/or upper troposphere of Saturn.

Keywords: atmosphere; Saturn; methane absorption; seasonal variations

References

  1. Avramchuk V.V. (1968). Raspredelenie metanovogo pogloscheniya v polose 0,619 mkm po disku Saturna v 1966 g. Astrometriya i astrofizika, 1968(1), 161–164.
  2. Avramchuk V.V., Krugov V.D. (1973). Rezul’taty fotograficheskikh nablyudeny Saturna i ikh interpretatsiya. Astrometriya i astrofizika, 1973(18), 39–45.
  3. Bugaenko L.A., Galkin L.S., Morozhenko A.V. (1972). Issledovanie molekulyarnogo pogloscheniya v atmosferakh planet-gigantov. Astron. vestnik., 6(4), 223–227.
  4. Bugaenko O.I., Galkin L.S. (1972). Polyarimetricheskie issledovaniya planet-gigantov. II. Fazovyy khod polyarizatsii izbrannykh oblastey diska Saturna. Astron. zhurnal., 49(4), 837–843.
  5. Bugaenko O.I., Galkin L.S., Morozhenko A.V. (1971). Polyarimetricheskie issledovaniya planet-gigantov. I. Raspredelenie polyarizatsii po disku Saturna. Astron. zhurnal., 48(4), 373–379.
  6. Vitinsky Yu.I., Ol’ A.I., Sazonov B.I. (1976). Solntse i atmosfera Zemli. L.: Gidrometeoizdat. 351 p.
  7. German Dzh.R., Goldberg R.A. (1981). Solntse, pogoda i klimat. L.: Gidrometeoizdat. 319 p.
  8. Dlugach Zh.M. (1982). Otrazhenie sveta mnogosloynoy planetnoy atmosferoy. Astron. vestnik., 17(2), 234–239.
  9. Teyfel’ V.G. (1967). Sravnenie raspredeleniya pogloscheniya v polose CH4 6190Å na diskakh Yupitera i Saturna. Trudy astrofiz. in-ta AN Kaz.SSR., 1967(9), 59–62.
  10. Eygenson M.S. (1957). Ocherki fiziko-geograficheskikh proyavleny solnechnoy aktivnosti. L’vov: Izdatel’stvo L’vovskogo universiteta. 230 p.
  11. Eygenson M.S., Gnevyshev M.N., Ol’ A.I., Rubashev B.M. (1948). Solnechnaya aktivnost’ i ee zemnye proyavleniya. M.-L.: OGIZ. 323 p.
  12. Baines K.H., Drossart P., Momary T.W., et al. (2005). The Atmospheres of Saturn and Titan in the Near-Infrared First Results of Cassini/VIMS. Earth, Moon, and Planets, 96(3–4), 119–147.
  13. Bezard B., Gautier D., Conrath B. (1984). A seasonal model of the Saturnian upper troposphere Comparison with Voyager infrared measurements. Icarus, 60, 274–288. https://doi.org/10.1016/0019-1035(84)90189-1
  14. Busse F.H. (1970). Differential rotation in stellar convective zones. Astrophys. J., 159, 629–639. https://doi.org/10.1086/150337
  15. Callis L.B., Nealy J.E. (1978). Solar UV variability and its effect on stratospheric thermal structure and trace constituents. Geophysical Research Letters, 5, 249–252. https://doi.org/10.1029/gl005i004p00249
  16. Carlson R.W. (1980). Photo-sputtering of ice and hydrogen around Saturn's rings. Nature, 283(5746), 461. https://doi.org/10.1038/283461a0
  17. Cess R.D., Carlson B.E., Caldwell J., et al. (1981). Latitudinal variations in Jovian statospherical temperatures. Icarus, 46, 249–255. https://doi.org/10.1016/0019-1035(81)90212-8
  18. Cess R.D., Cocran J. (1979). A Saturnian stratospheric seasonal climat model. Icarus, 349–357. https://doi.org/10.1016/0019-1035(79)90191-x
  19. Cochran A.L., Cochran W.D. (1981). Longitudinal variability of methane and ammonia bands on Saturn. Icarus, 48, 488–495. https://doi.org/10.1016/0019-1035(81)90059-2
  20. Conrath B.J., Pirraglia J.A. (1983). Thermal structure of Saturn from Voyager infrared measurements – Implications for atmospheric dynamics. Icarus, 53, 286–292. https://doi.org/10.1016/0019-1035(83)90148-3
  21. Dlugach J.M., Morozhenko A.V., Vidmachenko A.P., Yanovitskij E.G. (1983). Investigations of the optical properties of Saturn's atmosphere carried out at the Main Astronomical Observatory of the Ukrainian Academy of Sciences. Icarus, 54, 319–336. https://doi.org/10.1016/0019-1035(83)90201-4
  22. Dlugach J.M., Yanovitskij E.G. (1974). The Optical Properties of Venus and the Jovian Planets. II. Methods and Results of Calculations of the Intensity of Radiation Diffusely Reflected from Semi-Infinite Homogenous Atmospheres. Icarus, 22(1), 66–81. https://doi.org/10.1016/0019-1035(74)90167-5
  23. Drossart P., Courtin R., Atreya S., Tokunaga A. (1989). Variations in the Jovian atmospheric composition and chemistry. Time-variable phenomena in the Jovian system. – Washington: NASA-SP-494., 344–362.
  24. Fletcher L.N., Achterberg R.K., Greathouse Th.K., et al. (2010). Seasonal change on Saturn from Cassini/CIRS observations 2004–2009. Icarus, 337–352. https://doi.org/10.1016/j.icarus.2010.01.022
  25. Gallis L.V., Nealy J.E. (1978). Temperature UV variability and its effect on stratospheric thermal structure and trace constituents. Geophysical Research Letters, 5, 249–252. https://doi.org/10.1029/gl005i004p00249
  26. Glatzmaier G.A., Gilman P.A. (1982). Compressible convection in a rotating spherical shell. V. Induced differential rotation and meridional circulation. Astrophys J, 256(1), 316–330. https://doi.org/10.1086/159909
  27. Hays D.L., Latham D.A., Hays S. (1975). Measurements of the Monochromatic Flux from Vega. Astrophys. J., 197(3, part 1), 587–592.
  28. Ip W.-H. (1983). On plasma transport in the vicinity of the rings of Saturn: a siphon flow mechanism. Journal of Geophysical Research, 88, 819–822. https://doi.org/10.1029/ja088ia02p00819
  29. Irvine W.M., Simon Th., Menzel D.H., et al. (1968). Multicolor photoelectric photometry of the brighter planets. II. Observations from le Houga Observatory. Astronomical Journal, 73(4), 251–264. https://doi.org/10.1086/110626
  30. Irvine W.M., Simon Th., Menzel D.H., et al. (1968). Multicolor Photoelectric Photometry of the Brighter Planets. III. Observations from Boyden Observatory. Astronomical Journal, 73(8), 807–823. https://doi.org/10.1086/110702
  31. Karkoschka E., Tomasko M. (2005). Saturn's vertical and latitudinal cloud structure 1991–2004 from HST imaging in 30 filters. Icarus, 195–221. https://doi.org/10.1016/j.icarus.2005.05.016
  32. Karkoschka E., Tomasko M.G. (1992). Saturn's Upper Troposphere 1986–1989. Icarus, 97, 161–181. https://doi.org/10.1016/0019-1035(92)90125-q
  33. Marin M. (1968). Photometric photographique de Saturne. J. Observ., 51(3), 179–191.
  34. Ortiz J.L., Moreno F., Molina A. (1995). Saturn 1991–1993: Reflectivities and Limb-Darkening Coefficients at Methane Bands and Nearby Continua-Temporal Changes. Icarus, 328–344. https://doi.org/10.1006/icar.1995.1159
  35. Owen T. (1969). The spectra of Jupiter and Saturn in the photographic infrared. Icarus, 19(3), 355–364. https://doi.org/10.1016/0019-1035(69)90090-6
  36. Perez-Hoyos S., Sanchez-Lavega A., French R.G., Rojas J.F. (2005). Saturn's cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003). Icarus, 176, 155–174. https://doi.org/10.1016/j.icarus.2005.01.014
  37. Pilcher C.B., McCord Th.B. (1971). Narrow-Band Photometry of the Bands of Jupiter. Astrophysical Journal, 165, 195–201. https://doi.org/10.1086/150887
  38. Price M.J., Franz O.G. (1980). Saturn: UBV photoelectric pinhole scans of the disk. II. Icarus, 44(4), 657–667. https://doi.org/10.1016/0019-1035(80)90134-7
  39. Reese E.J. (1971). Jupiter: its Red Spot and other features in 1969–1970. Icarus, 14(3), 343–354. https://doi.org/10.1016/0019-1035(71)90005-4
  40. Reese E.J. (1971). Recent photographic measurement of Saturn. Icarus, 15(3), 466–479. https://doi.org/10.1016/0019-1035(71)90124-2
  41. Sanchez-Lavega A., Battaner E. (1986). Long-term changes in Saturn's atmospheric belts and zones. Astronomy and Astrophysics Supplement Series, 64(2), 287–301.
  42. Sanchez-Lavega A., Lecacheux J., Colas F., Laques P. (1993). Temporal Behavior of Cloud Morphologies and Motions in Saturn's Atmosphere. Journal of geophysical research, 98(El0), 18857–18872. https://doi.org/10.1029/93je01777
  43. Sanchez-Lavega A., Quesada J.A. (1988). A survey of Saturn's northern hemisphere from 1979 to 1987. Planet. Space Sci., 36(12), 1381–1389. https://doi.org/10.1016/0032-0633(88)90006-2
  44. Shimizu M. (1980). Strong interaction between the ring system and the ionosphere of Saturn. Moon and Planets, 22, 521–522. https://doi.org/10.1007/bf00897291
  45. Smoluchowski R. (1983). Formation of fine dust on Saturn rings as suggested by the presence of spokes. Icarus, 54(2), 263–266. https://doi.org/10.1016/0019-1035(83)90196-3
  46. Steklov A.F., Vidmachenko A.P., Miniailo N.F. (1983). Seasonal variations in the atmosphere of Saturn. Soviet Astronomy Letters, 9, 135–136.
  47. Stone P.H. (1973). The Dynamics of the Atmospheres of the Major Planets. Space Science Reviews, 444–459. https://doi.org/10.1007/bf00214755
  48. Suggs R. (1984). Ground based observations of a convective cloud feature in Saturn's northern hemisphere. Proceedings of the Southwest Regional Conference for Astronomy and Astrophysics, 9, 21.
  49. Teifel V.G. (1975). Calculation of the Depths of Absorption Lines and Bands on the Disk of a Planet Surrounded by a Semi-Infinite Homogeneous Atmosphere. Solar System Research, 9, 57.
  50. Teifel V.G. (1980). Optical properties and structure of Saturn's atmosphere. Solar System Research, 14(1), 1–16.
  51. Teifel V.G. (1974). The atmosphere of Saturn. In: Exploration of the planetary system. Proceedings of the Symposium, Torun, Poland, September 5–8, 1973. (A75–21276 08–91) Dordrecht, D. Reidel Publishing Co., 415–440.
  52. Teifel V.G., Usol'tseva L.A., Kharitonova G.A. (1973). Optical Properties and Structure of Saturn's Atmosphere. II. Latitudinal Variations of Absorption in the 0,62-mu CH_4 Band and Characteristics of the Planet in the Near Ultraviolet. Soviet Astronomy, 17, 108–111.
  53. Teifel V.G., Usol'tseva L.A., Kharitonova G.A. (1971). Optical Properties and Structure of Saturn's Atmosphere. I. Preliminary Results of Studies of CH_4 Absorption Bands on the Planetary Disc. Soviet Astronomy, 15, 296–302.
  54. Teifel V.G., Usol'tzeva L.A., Kharitonova G.A. (1969). The Spectral Characteristics and Probable Structure of the Cloud Layer of Saturn. Planetary Atmospheres. Proceedings from 40th IAU Symposium held in Marfa, Texas, Oct. 26–31, 1969. Edited by Carl Sagan, Tobias C. Owen, and Harlan J. Smith. International Astronomical Union. Symposium no. 40, Dordrecht, Reidel., 375–383.
  55. Tejfel V.G. (1969). Molecular absorption and the possible structure of the cloud layers of Jupiter and Saturn. Journal of the Atmospheric Sciences, 26(5), 854–859. https://doi.org/10.1175/1520-0469(1969)026<0854:maatps>2.0.co;2
  56. Tejfel V.G. (1997). Molecular-Absorption Distribution over Saturn's Disk from the 1995 Observations Based on the Zonal CCD Spectrophotometry: Observational Results. Solar System Research, 198–206.
  57. Tejfel V.G., Karimov A. (2009). Latitudinal asymmetry of the ammonia absorption on Saturn. European Planetary Science Congress 2009, held 14–18 September in Potsdam, Germany. – EPSC. – 4., 34.
  58. Tejfel V.G., Karimov A.M., Kharitonova G.A. (2010). Comparison of the Latitudinal Variations of the Methane Absorption. Astronomicheskii Tsirkulyar, 1573, 1–2.
  59. Tejfel V.G., Vdovichenko V., Karimov A., et al. (2010). Saturn CCD-spectrophotometry in 2009 and 2010 – a comparison of near- and post-equinox latitudinal distribution of molecular absorption. European Planetary Science Congress 2010, held 20–24 September in Rome, Italy. EPSC. – V. 5. Abstr. 322., 322.
  60. Tejfel V.G., Vdovichenko V.D., Karimov A.M., et al. (2008). The Space-Time Variations of the Molecular Absorption Bands on Jupiter and Saturn from 1995–2007 Observations. 39th Lunar and Planetary Science Conference, held March 10–14, 2008 in League City, Texas. LPI Contribution № 1391., 1530.
  61. Tejfel V.G., Vdovichenko V.D., Karimov A.M., et al. (2010). Saturn at and between the equinoxes 1995 and 2009. 41st Lunar and Planetary Science Conference, held March 1–5, 2010 in The Woodlands, Texas. LPI Contribution № 1533., 1250.
  62. Temma T., Chanover N.J., Simon-Miller A.A., et al. (2005). Vertical structure modeling of Saturn's equatorial region using high spectral resolution imaging. Icarus, 464–489. https://doi.org/10.1016/j.icarus.2004.11.006
  63. Tomasko M.G., West R.A., Orton G.S., Teifel V.G. (1984). Clouds and aerosols in Saturn's atmosphere. In: Saturn (A85-33976 15-91). Tucson, AZ, University of Arizona Press., 150–194.
  64. Trafton L. (1985). Long-Term Changes in Saturn's Troposphere. Icarus, 63, 374–405. https://doi.org/10.1016/0019-1035(85)90053-3
  65. Trafton L. (1977). Saturn: Long-Term Variation of H_2, and CH4, Absorptions. Icarus, 31, 369–384. https://doi.org/10.1016/0019-1035(77)90029-x
  66. Vidmachenko A.P. (1981). Absolute electrophotometry of features of Saturn's disc. Physics of planetary atmospheres, 113–132.
  67. Vidmachenko A.P. (1981). Absolute electrophotometry of the B ring of Saturn. Physics of planetary atmospheres, 132–138.
  68. Vidmachenko A.P. (1984). Electrophotometry of Saturn. II – Spectral brightness distribution along the central meridian. Astrometriia i Astrofizika, 1984(51), 56–62.
  69. Vidmachenko A.P. (1991). Giant planets – Theoretical and observational aspects. Astronomicheskii Vestnik, 25, 277–292.
  70. Vidmachenko A.P. (1998). On activity of Jupiter's atmosphere. XXIX Lunar and Planetary Science Conference. – Houston, Texas (USA)., 1–2.
  71. Vidmachenko A.P. (1985). On the activity of Jupiter's atmosphere. Kinematics and Physics of Celestial Bodies, 1(5), 91.
  72. Vidmachenko A.P. (1985). Possible effect of the rings on the photometric properties of Saturn's cloud layer. Kinematics and Physics of Celestial Bodies, 1, 12–15.
  73. Vidmachenko A.P. (2015). Seasonal changes in the reflection characteristics of Saturn in 4 moments of Saturnian equinox. 17 International scientific conference Astronomical School of Young Scientists, held May 20–22, 2015 in Zhytomyr, Ukraine. The program and abstracts., 10–14.
  74. Vidmachenko A.P. (1999). Seasonal variations in the optical characteristics of Saturn's atmosphere. Kinematics and Physics of Celestial Bodies, 15(5), 320–331.
  75. Vidmachenko A.P. (1997). Temporal changes in methane absorption in Jupiter's atmosphere. Kinematics and Physics of Celestial Bodies, 13(6), 21–25.
  76. Vidmachenko A.P. (1984). The albedo of the southern equatorial region of Saturn in 1977–1981. Astronomicheskii Vestnik, 18(3), 191–198.
  77. Vidmachenko A.P. (1987). The appearance of seasonal variations in Saturn's atmosphere. Kinematics and Physics of Celestial Bodies, 3, 10–12.
  78. Vidmachenko A.P. (1982). The electrophotomety of Saturn. I – The distribution of brightness over the equatorial regions in the spectral range of 0,3–0,6 micron. Astrometriia i Astrofizika, 1982(47), 70–75.
  79. Vidmachenko A.P. (2015). The influence of solar activity on seasonal variation of the methane absorption in Saturn's atmosphere. Kinematics and Physics of Celestial Bodies. https://doi.org/10.3103/s088459131503006x
  80. Vidmachenko A.P. (1982). The Photometrical Features in Brightness Distribution Over Saturn's Equatorial Belt in Ultraviolet. Astronomicheskii Tsirkulyar № 1227, 1–3.
  81. Vidmachenko A.P. (1999). Variations in Reflective Characteristics of Jupiter's Atmosphere. Solar System Research, 33, 464.
  82. Vidmachenko A.P. (2000). Variations of reflective characteristics of Jupiter's atmosphere. 31st Lunar and Planetary Science Conference. – March 13–17, 2000. – Houston, Texas (USA)., 1–2.
  83. Vidmachenko A.P., Dlugach Zh.M., Morozhenko A.V. (1984). Nature of the optical nonuniformity in Saturn's disk. Solar System Research, 17(4), 164–171.
  84. Vidmachenko A.P., Klimenko V.M., Morozhenko A.V. (1980). Multicolor photometry of features on the disk of Jupiter. I – Relative spectrophotometry in the 1977–1978 observing period. Solar System Research, 14(2), 62–67.
  85. Vidmachenko A.P., Morozhenko A.V., Klimenko V.M. (1980). Phase effect for the brightnes coeffisient of the central disk of Saturn and features of Jupiter's disk. Icarus, 42(3), 354–357. https://doi.org/10.1016/0019-1035(80)90101-3
  86. Vidmachenko A.P., Steklov A.F., Minyajlo N.F. (1984). Seasonal activity on Jupiter? Soviet Astronomy Letters, 10, 289–290.
  87. West R.A., Tomasko M.G., Smith B.A., et al. (1982). Spatially resolved methane band photometry of Saturn. I – Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-Å bands. Icarus, 51, 51–64. https://doi.org/10.1016/0019-1035(82)90029-x

Download PDF